
1. Định nghĩa
Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.
2. Cách xác định góc giữa hai mặt phẳng
TH1: Hai mặt phẳng \(\left( P \right),\left( Q \right)\) song song hoặc trùng nhau thì góc giữa chúng bằng \({0^0}\).
TH2: Hai mặt phẳng \(\left( P \right),\left( Q \right)\) không song song hoặc trùng nhau.
Cách 1:
+) Dựng hai đường thẳng \(n,p\) lần lượt vuông góc với hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).
+) Khi đó, góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) là góc giữa hai đường thẳng \(n,p\).
Cách 2:
+) Xác định giao tuyến \(\Delta \) của hai mặt phẳng \(\left( P \right),\left( Q \right)\).
+) Tìm một mặt phẳng \(\left( R \right)\) vuông góc \(\Delta \) và cắt và hai mặt phẳng theo các giao tuyến \(a,b\).
+) Góc giữa hai mặt phẳng \(\left( P \right),\left( Q \right)\) là góc giữa \(a\) và \(b\).
b) Diện tích hình chiếu của đa giác
Gọi \(S\) là diện tích của đa giác \(\left( H \right)\) trong \(\left( P \right),S'\) là diện tích hình chiếu \(\left( {H'} \right)\) của \(\left( H \right)\) trên mặt phẳng \(\left( Q \right)\) và \(\alpha = \left( {\left( P \right),\left( Q \right)} \right)\). Khi đó:
\(S' = S.\cos \alpha \)
Ví dụ: Cho tứ diện \(ABCD\) có \(\Delta BCD\) vuông cân tại \(B\), \(AB \bot \left( {BCD} \right),BC = BD = a\), góc giữa \(\left( {ACD} \right)\) và \(\left( {BCD} \right)\) là \({30^0}\). Tính diện tích toàn phần của tứ diện \(ABCD\).
Giải:
- Xác định góc giữa hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {BCD} \right)\):
Ta có: \(\Delta ABC = \Delta ABC\left( {c.g.c} \right) \Rightarrow AC = AD\) (cạnh tương ứng)
Gọi \(E\) là trung điểm của \(CD \Rightarrow AE \bot CD,BE \bot CD\).
Ta có: \(\left\{ \begin{array}{l}\left( {ACD} \right) \cap \left( {BCD} \right) = CD\\AE \bot CD\\BE \bot CD\end{array} \right.\) nên góc giữa hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {BCD} \right)\) là góc giữa hai đường thẳng \(AE,BE\).
Do đó \(\widehat {AEB} = {30^0}\).
- Tính diện tích toàn phần của tứ diện:
Tam giác vuông cân \(BCE\) có:
\(CD = \sqrt {B{C^2} + B{D^2}} = a\sqrt 2 \Rightarrow BE = \dfrac{1}{2}CD = \dfrac{1}{2}.a\sqrt 2 = \dfrac{{a\sqrt 2 }}{2}\)
Tam giác vuông \(ABE\) có \(AB = BE.\tan {30^0} = \dfrac{{a\sqrt 2 }}{2}.\dfrac{{\sqrt 3 }}{3} = \dfrac{{a\sqrt 6 }}{6}\)
Do đó:
\({S_{ABC}} = \dfrac{1}{2}BA.BC = \dfrac{1}{2}.\dfrac{{a\sqrt 6 }}{6}.a = \dfrac{{{a^2}\sqrt 6 }}{{12}}\)
\({S_{ABD}} = \dfrac{1}{2}BA.BD = \dfrac{1}{2}.\dfrac{{a\sqrt 6 }}{6}.a = \dfrac{{{a^2}\sqrt 6 }}{{12}}\)
\({S_{BCD}} = \dfrac{1}{2}BC.BD = \dfrac{{{a^2}}}{2}\)
\({S_{ACD}} = \dfrac{{{S_{BCD}}}}{{\cos {{30}^0}}} = \dfrac{1}{2}{a^2}:\dfrac{{\sqrt 3 }}{2} = \dfrac{{{a^2}}}{{\sqrt 3 }} = \dfrac{{{a^2}\sqrt 3 }}{3}\)
Vậy diện tích toàn phần của tứ diện là:
\(S = {S_{ABC}} + {S_{ABD}} + {S_{BCD}} + {S_{ACD}} = \dfrac{{{a^2}\sqrt 6 }}{{12}} + \dfrac{{{a^2}\sqrt 6 }}{{12}} + \dfrac{{{a^2}\sqrt 3 }}{3} + \dfrac{{{a^2}}}{2} = \dfrac{{{a^2}\left( {\sqrt 6 + 2\sqrt 3 + 3} \right)}}{6}\) .
Cho hình chóp S.ABCD có đáy ABCD là một hình thoi tâm I cạnh a...
Cho hình chóp tứ giác đều S.ABCD có các cạnh bên và cạnh đáy đều bằng a...
Cho hình chóp tam giác đều S.ABC...
Giải bài 8 trang 114 SGK Hình học 11. Tính độ dài đường chéo của một hình lập phương cạnh a.
Giải bài 7 trang 114 SGK Hình học 11. Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, BC = b, CC' = c...
Cho hình chóp S.ABCD có đáy ABCD là một hình thoi cạnh a và có SA = SB = SC = a...
Giải bài 5 trang 114 SGK Hình học 11. Cho hình lập phương ABCD.A'B'C'D'. Chứng minh rằng...
Cho hai mặt phẳng
Trong mặt phẳng
Giải bài 2 trang 113 SGK Hình học 11. Cho hai mặt phẳng
Cho ba mặt phẳng
Có tồn tại một hình chóp tứ giác S.ABCD có hai mặt bên (SAB) và (SCD) cùng vuông góc với mặt phẳng đáy hay không ?...
Giải câu hỏi 6 trang 112 SGK Hình học 11. Chứng minh rằng hình chóp đều có các mặt bên là những tam giác cân bằng nhau...
Giải câu hỏi 5 trang 111 SGK Hình học 11. Sáu mặt của hình hộp chữ nhật có phải là những hình chữ nhật không ?...
Giải câu hỏi 4 trang 111 SGK Hình học 11. Cho biết mệnh đề nào sau đây là đúng ?...
Cho hình vuông ABCD. Dựng đoạn AS vuông góc với mặt phẳng chứa hình vuông ABCD...
Cho tứ diện ABCD có ba cạnh AB, AC, AD đôi một vuông góc với nhau....
Cho hai mặt phẳng (α) và (β) vuông góc với nhau và cắt nhau theo giao tuyến d....
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: