Bài 3 trang 113 SGK Hình học 11


Đề bài

Trong mặt phẳng \((\alpha)\) cho tam giác \(ABC\) vuông ở \(B\). Một đoạn thẳng \(AD\) vuông góc với \((\alpha)\) tại \(A\). Chứng minh rằng:

a) \(\widehat {ABD}\) là góc giữa hai mặt phẳng \((ABC)\) và \((DBC)\);

b) Mặt phẳng \((ABD)\) vuông góc với mặt phẳng \((BCD)\);

c) \(HK//BC\) với \(H\) và \(K\) lần lượt là giao điểm của \(DB\) và \(DC\) với mặt phẳng \((P)\) đi qua \(A\) và vuông góc với \(DB\).

Video hướng dẫn giải

Lời giải chi tiết

a) Tam giác \(ABC\) vuông tại \(B\) nên \(AB\bot BC\) (1)

\(AD\) vuông góc với \((\alpha)\) nên \(AD\bot BC\) (2)

Từ (1) và (2) suy ra \(BC\bot (ABD)\) suy ra \(BC\bot BD\)

\(\left. \matrix{
(ABC) \cap (DBC) = BC \hfill \cr
BD \bot BC \hfill \cr
AB \bot BC \hfill \cr} \right\} \)

\(\Rightarrow \) góc giữa hai mặt phẳng \((ABC)\) và \((DBC)\) là góc giữa hai đường thẳng \(BD\) và \(BA\)

Mà \(DA \bot \left( {ABC} \right) \Rightarrow DA \bot AB\) \( \Rightarrow \widehat {ABD} < {90^0}\)

Vậy \(\widehat {ABD}\) là góc giữa hai mặt phẳng \((ABC)\) và \((DBC)\).

b)

\(\left. \matrix{
BC \bot (ABD) \hfill \cr
BC \subset (BCD) \hfill \cr} \right\}\) \( \Rightarrow (ABD) \bot (BCD)\)

c) Do (P) đi qua A, H, K nên mặt phẳng \(\left( P \right) \equiv \left( {AHK} \right)\) đi qua \(A\) và vuông góc với \(DB\) nên \(HK\bot BD\)

Trong \((BCD)\) có: \(HK\bot BD\) và \(BC\bot BD\) nên suy ra \(HK// BC\).

Chú ý:

Từ chứng minh trên ta có thể suy ra cách dựng (P) như sau:

Trong (DAB), qua A kẻ đường thẳng vuông góc với DB cắt DB tại H.

Trong (DBC), kẻ đường thẳng qua H và vuông góc với DB cắt DC tại K.

Từ đó ta có (P) chính là (AHK).

Loigiaihay.com


Bình chọn:
3.4 trên 12 phiếu

Các bài liên quan: - Bài 4. Hai mặt phẳng vuông góc

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài