Bài 6 trang 114 SGK Hình học 11

Bình chọn:
3.4 trên 7 phiếu

Giải bài 6 trang 114 SGK Hình học 11. Cho hình chóp S.ABCD có đáy ABCD là một hình thoi cạnh a và có SA = SB = SC = a...

Đề bài

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là một hình thoi cạnh \(a\) và có \(SA = SB = SC = a\). Chứng minh rằng:

a) Mặt phẳng \((ABCD)\) vuông góc với mặt phẳng \((SBD)\);

b) Tam giác \(SBD\) là tam giác vuông.

Phương pháp giải - Xem chi tiết

a) Chứng minh \(AC \bot \left( {SBD} \right)\).

b) Chứng minh tam giác SBD có đường trung tuyến ứng với một cạnh bằng nửa cạnh đó.

Lời giải chi tiết

a) Gọi \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD\)

Theo tính chất của hình thoi thì \(O\) là trung điểm của \(AC,BD\)

Xét tam giác cân \(SAC\) cân tại \(S\) có \(SO\) vừa là đường trung tuyến đồng thời là đường cao do đó \(SO\bot AC\)                      (1)

Mặt khác \(ABCD\) là hình thoi nên \(AC\bot BD\)      (2)

Từ (1) và (2) suy ra \(AC\bot (SBD)\)

\(AC\subset (ABCD)\Rightarrow (ABCD)\bot (SBD)\)

b) \(∆SAC = ∆BAC  (c.c.c)\)

Do đó các đường trung tuyến ứng với các đỉnh tương ứng của hai tam giác bằng nhau: \(SO = BO\)

\(O\) là trung điểm của \(BD\) nên \(OB=OD\)

Suy ra \(SO=OB=OD={1\over 2} BD\)

Đường trung tuyến ứng với một cạnh của tam giác và bằng nửa cạnh ấy thì tam giác đó là tam giác vuông. Do đó tam giác \(SBD\) vuông tại \(S\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan