Câu hỏi 6 trang 112 SGK Hình học 11


Đề bài

Chứng minh rằng hình chóp đều có các mặt bên là những tam giác cân bằng nhau

Video hướng dẫn giải

Lời giải chi tiết

Xét hình chóp đều \(S.{A_1}{A_2}...{A_n}\) có \(H\) là chân đường cao hạ từ \(S\) xuống \(\left( {{A_1}{A_2}...{A_n}} \right)\)

Khi đó \(H{A_1} = H{A_2} = ... = H{A_n}\) và \(SH \bot \left( {{A_1}{A_2}...{A_n}} \right)\) \( \Rightarrow SH \bot S{A_1},...SH \bot S{A_n}\).

Xét các tam giác vuông \(SH{A_{m - 1}}\) và \(SH{A_m}\) \(\left( {2 \le m \le n} \right)\) có:

\(SH\) chung

\(H{A_{m - 1}} = H{A_m}\) (gt)

\( \Rightarrow \Delta SH{A_{m - 1}} = \Delta SH{A_m}\) (hai cạnh góc vuông)

\( \Rightarrow S{A_{m - 1}} = {S_m}\) (hai cạnh tương ứng)

Vậy \(S{A_{m - 1}} = S{A_m}\) hay \(S{A_1} = S{A_2} = ... = S{A_n}\) nên các mặt bên đều là các tam giác cân.

 Loigiaihay.com


Bình chọn:
3.8 trên 6 phiếu

Các bài liên quan: - Bài 4. Hai mặt phẳng vuông góc

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.