Bài 4 trang 114 SGK Hình học 11

Bình chọn:
3.4 trên 5 phiếu

Giải bài 4 trang 114 SGK Hình học 11. Cho hai mặt phẳng

Đề bài

Cho hai mặt phẳng \((\alpha)\), \((\beta)\) cắt nhau và một điểm \(M\) không thuộc \((\alpha)\) và không thuộc \((\beta)\). Chứng minh rằng qua điểm \(M\) có một và chỉ một mặt phẳng \((P)\) vuông góc với \((\alpha)\) và \((\beta)\). Nếu \((\alpha)\) song song với \((\beta)\) thì kết quả trên sẽ thay đổi như thế nào?

Phương pháp giải - Xem chi tiết

Sử dụng kết quả của định lí: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba đó.

Lời giải chi tiết

 

Gọi a là giao tuyến của hai mặt phẳng \((\alpha)\) và \((\beta)\). 

Ta có: \(\left\{ \begin{array}{l}\left( P \right) \bot \left( \alpha \right)\\\left( P \right) \bot \left( \beta \right)\\\left( \alpha \right) \cap \left( \beta \right) = a\end{array} \right. \Rightarrow a \bot \left( P \right)\)

Do đó mặt phẳng (P) đi qua M và vuông góc với đường thẳng a, do đó mặt phẳng (P) là duy nhất.

Nếu  \((\alpha)//(\beta)\) gọi \(d\) là đường thẳng đi qua \(M\) và vuông góc với \((\alpha)\) khi đó ta có \(d\bot (\beta)\).

Như vậy mọi mặt phẳng chứa \(d\) đều vuông góc với  \((\alpha)\) và \((\beta)\).

Do đó khi  \((\alpha)//(\beta)\) thì có vô số mặt phẳng \((P)\) đi qua \(M\) và vuông góc với  \((\alpha)\) và \((\beta)\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 4. Hai mặt phẳng vuông góc

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu