Bài 10 trang 180 SGK Đại số và Giải tích 11


Tính các giới hạn sau

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính các giới hạn sau

LG a

\(\lim {{(n + 1){{(3 - 2n)}^2}} \over {{n^3} + 1}}\)

Phương pháp giải:

Chia cả tử và mẫu cho \(n^3\).

Lời giải chi tiết:

\(\eqalign{
& \lim {{(n + 1){{(3 - 2n)}^2}} \over {{n^3} + 1}} = \lim {{(1 + {1 \over n}){{({3 \over n} - 2)}^2}} \over {1 + {1 \over {{n^3}}}}} \cr
& = {{(1 + 0){{(0 - 2)}^2}} \over {1 + 0}} = 4 \cr} \)

LG b

\(\lim ({1 \over {{n^2} + 1}} + {2 \over {{n^2} + 1}} + {3 \over {{n^2} + 1}} + ... + {{n - 1} \over {{n^2} + 1}})\)

Phương pháp giải:

Cộng các phân số cùng mẫu số, sử dụng kết quả: \(1 + 2 + ... + n - 1 = \dfrac{{\left( {n - 1} \right)n}}{2}\). Sau đó chia cả tử và mẫu cho \(n^2\).

Lời giải chi tiết:

\(\begin{array}{l}
\frac{1}{{{n^2} + 1}} + \frac{2}{{{n^2} + 1}} + \frac{3}{{{n^2} + 1}} + ... + \frac{{n - 1}}{{{n^2} + 1}}\\
= \frac{{1 + 2 + ... + n - 1}}{{{n^2} + 1}} = \frac{{\frac{{n(n - 1)}}{2}}}{{{n^2} + 1}} = \frac{{{n^2} - n}}{{2({n^2} + 1)}}\\
= \lim (\frac{1}{{{n^2} + 1}} + \frac{2}{{{n^2} + 1}} + \frac{3}{{{n^2} + 1}} + ... + \frac{{n - 1}}{{{n^2} + 1}})\\
= \lim \frac{{{n^2} - n}}{{2({n^2} + 1)}} = \lim \frac{{\frac{{{n^2} - n}}{{{n^2}}}}}{{2.\frac{{{n^2} + 1}}{{{n^2}}}}} = \lim \frac{{1 - \frac{1}{n}}}{{2(1 + \frac{1}{{{n^2}}})}} = \frac{1}{2}
\end{array}\)

LG c

\(\lim {{\sqrt {4n^2 + 1}  + n} \over {2n + 1}}\)

Phương pháp giải:

Chia cả tử và mẫu cho \(n^2\), lưu ý căn bậc hai.

Lời giải chi tiết:

\(\eqalign{
& \lim {{\sqrt {4n^2 + 1} + n} \over {2n + 1}} \cr
& = \lim {{n.\sqrt {4 + {1 \over {{n^2}}}} + n} \over {2n + 1}} \cr
& = \lim {{n.(\sqrt {4 + {1 \over {{n^2}}}} + 1)} \over {n(2 + {1 \over n})}} \cr
& = \lim {{\sqrt {4 + {1 \over {{n^2}}}} + 1} \over {2 + {1 \over n}}} \cr
& = {{2 + 1} \over 2} = {3 \over 2} \cr} \)

LG d

\(\lim \sqrt n (\sqrt {n - 1}  - \sqrt n )\)

Phương pháp giải:

Nhân chia biểu thức dưới dấu \(\lim \) với biểu thức liên hợp của \(\sqrt {n - 1}  - \sqrt n \), sau đó chia cả tử và mẫu của phân thức mới cho \(\sqrt{n}\).

Lời giải chi tiết:

\(\eqalign{
& \lim \sqrt n (\sqrt {n - 1} - \sqrt n ) \cr 
& = \lim {{\sqrt n (\sqrt {n - 1} - \sqrt n )(\sqrt {n - 1} + \sqrt n )} \over {\sqrt {n - 1} + \sqrt n }} \cr 
& = \lim {{\sqrt n \left[ {(n - 1) - n} \right]} \over {\sqrt {n - 1} + \sqrt n }} \cr 
& = \lim {{ - \sqrt n } \over {\sqrt n \left[ {\sqrt {1 - {1 \over n}} + 1} \right]}} \cr 
& = \lim {{ - 1} \over {\sqrt {1 - {1 \over n}} + 1}} = - {1 \over 2} \cr} \)

Loigiaihay.com


Bình chọn:
3.5 trên 14 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí