Bài 17 trang 181 SGK Đại số và Giải tích 11


Tính đạo hàm của các hàm số sau

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính đạo hàm của các hàm số sau

LG a

\(\displaystyle y = {1 \over {{{\cos }^2}3x}}\)

Phương pháp giải:

Sử dụng công thức \(\left( {\dfrac{1}{u}} \right)' = -\dfrac{{u'}}{u^2}\)

Lời giải chi tiết:

\(y'  =  - \dfrac{{\left( {{{\cos }^2}3x} \right)'}}{{{{\cos }^4}3x}} \) \(=  - \dfrac{{2\cos 3x\left( {\cos 3x} \right)'}}{{{{\cos }^4}3x}}\) \(=  - \dfrac{{2\cos 3x.3\left( { - \sin 3x} \right)}}{{{{\cos }^4}3x}} \)

\(= \dfrac{{6\sin 3x}}{{{{\cos }^3}3x}}\)

LG b

\(\displaystyle y = {{\cos \sqrt {{x^2} + 1} } \over {\sqrt {{x^2} + 1} }}\)

Phương pháp giải:

Sử dụng quy tắc tính đạo hàm của thương: \(\left( {\dfrac{u}{v}} \right)' = \dfrac{{u'v - v'u}}{{{v^2}}}\)

Lời giải chi tiết:

LG c

\(y = (2 - {x^2})cosx + 2x.sinx\)

Phương pháp giải:

Sử dụng quy tắc tính đạo hàm của tích: \(\left( {uv} \right)' = u'v + v'u\)

Lời giải chi tiết:

LG d

\(\displaystyle y = {{\sin x - x.cosx} \over {\cos x + x.\sin x}}\)

Phương pháp giải:

Sử dụng quy tắc tính đạo hàm của thương: \(\left( {\dfrac{u}{v}} \right)' = \dfrac{{u'v - v'u}}{{{v^2}}}\)

Lời giải chi tiết:

Loigiaihay.com


Bình chọn:
4.5 trên 8 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài