Bài 11 trang 180 SGK Đại số và Giải tích 11

Bình chọn:
3 trên 7 phiếu

Giải bài 11 trang 180 SGK Đại số và Giải tích 11. Cho hai dãy số (un), (vn) với

Đề bài

Cho hai dãy số \((u_n)\), \((v_n)\) với 

\({u_n} = {n \over {{n^2} + 1}}\) và \({v_n} = {{n\cos {\pi  \over n}} \over {{n^2} + 1}}\)

a) Tính \(\lim u_n\)

b) Chứng minh rằng \(\lim v_n= 0\)

Phương pháp giải - Xem chi tiết

a) Tính \(\lim {u_n}\): Chia cả tử và mẫu cho \(n^2\).

b) Tính \(\lim \frac{\pi }{n}\), sau đó tính (\lim {v_n}\) như sau: \(\lim {v_n} = \lim \frac{n}{{{n^2} + 1}}.\lim \frac{\pi }{n}\)

Lời giải chi tiết

a) Ta có:

\(\lim {u_n} = \lim {n \over {{n^2} + 1}} = \lim {{{n^2}({1 \over n})} \over {{n^2}(1 + {1 \over {{n^2}}})}} \) \(= \lim {{{1 \over n}} \over {1 + {1 \over {{n^2}}}}} = {0 \over 1} = 0\)

b) Ta có:

 \(\lim {\pi  \over n} = 0 \Rightarrow \lim \cos {\pi  \over n} = \cos 0 = 1\)

Vậy \(\lim {v_n} = \lim {n \over {{n^2} + 1}}\lim \cos {\pi  \over n} \)

Ta có \(\lim \frac{n}{{{n^2} + 1}} = \lim \frac{{\frac{1}{n}}}{{1 + \frac{1}{{{n^2}}}}} = \frac{0}{1} = 0 \Rightarrow \lim {v_n} = 0.1 = 0\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - ÔN TẬP CUỐI NĂM - ĐẠI SỐ VÀ GIẢI TÍCH 11

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu