Bài 16 trang 181 SGK Đại số và Giải tích 11

Bình chọn:
4.1 trên 8 phiếu

Giải bài 16 trang 181 SGK Đại số và Giải tích 11. Giải các phương trình

Đề bài

Giải các phương trình

a) \(f’(x) = g(x)\) với \(f(x) = \sin^3 2x\) và \(g(x) = 4\cos2x – 5\sin4x\)

b) \(f’(x) = 0\) với \(f(x) = 20\cos3x + 12\cos5x – 15\cos4x\).

Phương pháp giải - Xem chi tiết

a) Tính \(f'(x)\), đưa phương trình về dạng tích và giải phương trình lượng giác cơ bản, sử dụng công thức nhân đôi: \(\sin 4x = 2\sin 2x\cos 2x\)

b) Tính \(f'(x)\)

Sử dụng công thức biến đổi tổng thành tích: \(\sin a + \sin b = 2\sin \frac{{a + b}}{2}\cos \frac{{a - b}}{2}\)

Đưa phương trình về dạng tích và giải phương trình lượng giác cơ bản.

Lời giải chi tiết

a) Ta có: \(f(x) = \sin^3 2x\) 

\(⇒  f’(x) = 3\sin^2 2x (\sin2x)’ = 6\sin^2 2x \cos2x\)

Do đó:

\(\eqalign{
& f'(x) = g(x)\cr& \Leftrightarrow 6si{n^2}2x\cos 2x = 4\cos 2x - 5\sin 4x \cr
& \Leftrightarrow 6si{n^2}2x\cos 2x = 4\cos 2x - 10\sin 2x\cos 2x \cr
& \Leftrightarrow \cos 2x(3{\sin ^2}2x + 5\sin 2x - 2) = 0 \cr
& \Leftrightarrow \left[ \matrix{
\cos 2x = 0\,\,\,\,\,\,(1) \hfill \cr
3{\sin ^2}2x + 5\sin 2x - 2 = 0 \,\,\,\, (2)\hfill \cr} \right. \cr} \)

Giải (1): \(2x = {\pi  \over 2} + k\pi \,\,(k \in \mathbb Z) \Leftrightarrow x = {\pi  \over 4} + {{k\pi } \over 2} (k \in \mathbb Z)\)

Giải (2): \( \Leftrightarrow \left[ \begin{array}{l}\sin 2x = - 2\,\,\left( {ktm} \right)\\\sin 2x = \frac{1}{3}\,\,\,\,\,\left( {tm} \right)\end{array} \right.\)

\(\eqalign{
& \sin 2x = {1 \over 3} \Leftrightarrow \left[ \matrix{
2x = \arcsin ({1 \over 3}) + k2\pi \hfill \cr
2x = \pi - \arcsin ({1 \over 3}) + k2\pi \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = {1 \over 2}\arcsin ({1 \over 3}) + {k\pi }  \hfill \cr
x = {\pi \over 2} - {1 \over 2}\arcsin ({1 \over 2}) + {k\pi }  \hfill \cr} \right.;k \in \mathbb Z \cr} \)

Tóm lại, phương trình đã cho có ba nghiệm là:

\(\left[ \matrix{
x = {\pi \over 4} + {{k\pi } \over 2} \hfill \cr
x = {1 \over 2}\arcsin ({1 \over 3}) + {k\pi }  \hfill \cr
x = {\pi \over 2} - {1 \over 2}\arcsin ({1 \over 2}) + {k\pi }  \hfill \cr} \right.;k \in \mathbb Z\)

b) Ta có: \(f’(x) = -60sin 3x – 60 sin 5x + 60 sin4x = 0\)

Do đó:

\(\eqalign{
& f'(x) = 0 \Leftrightarrow - \sin 3x - \sin 5x + \sin 4x = 0 \cr
& \Leftrightarrow \sin 5x + \sin 3x - \sin 4x=0 \cr
& \Leftrightarrow 2\sin 4x{\mathop{\rm cosx}\nolimits} - sin4x = 0 \cr
& \Leftrightarrow sin4x(2cosx - 1) = 0 \cr} \)

\(\eqalign{
& \Leftrightarrow \left[ \matrix{
\sin 4x = 0 \hfill \cr
{\mathop{\rm cosx}\nolimits} = {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
4x = k\pi \hfill \cr
x = \pm {\pi \over 3} + k2\pi \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = k{\pi \over 4} \hfill \cr
x = \pm {\pi \over 3} + k2\pi \hfill \cr} \right.;k \in\mathbb Z \cr}\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - ÔN TẬP CUỐI NĂM - ĐẠI SỐ VÀ GIẢI TÍCH 11

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.