Bài 9 trang 180 SGK Đại số và Giải tích 11

Bình chọn:
3.7 trên 3 phiếu

Giải bài 9 trang 180 SGK Đại số và Giải tích 11. Hãy tính tổng của năm số hạng đầu của cấp số nhân đã cho.

Đề bài

Cho biết trong một cấp số nhân, hiệu của số hạng thứ ba và số hạng thứ hai bằng 12 và nếu thêm 10 vào số hạng thứ nhất, thêm 8 vào số hạng thứ hai, còn giữ nguyên số hạng thứ ba thì ba số mới lập thành một cấp số cộng. Hãy tính tổng của năm số hạng đầu của cấp số nhân đã cho.

Phương pháp giải - Xem chi tiết

Sử dụng các công thức SHTQ của cấp số cộng, cấp số nhân và các tính chất của CSC, CSN.

Lời giải chi tiết

Theo giả thiết ta có:

Cấp số nhân: \(u_1, u_2, u_3,...\)

Cấp số cộng: \(u_1 + 10, u_2 + 8, u_3,...\)

Ta có hệ phương trình:

\(\eqalign{
& \left\{ \matrix{
{u_3} - {u_2} = 12 \hfill \cr
{u_2} + 8 = {{({u_1} + 10) + {u_3}} \over 2} \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{u_1}{q^2} - {u_1}q = 12 \hfill \cr
2({u_1}q + 8) = {u_1} + 10 + {u_1}{q^2} \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{u_1}({q^2} - q) = 12 \hfill \cr
{u_1}({q^2} - 2q + 1) = 6 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{u_1}({q^2} - q) = 12\,\,\,\,(1) \hfill \cr
{u_1}{(q - 1)^2} = 6\,\,\,\,\,\,\,(2) \hfill \cr} \right.({u_1} \ne 0,q \ne 0,q \ne 1) \cr} \)

Lấy (1) chia cho 2 vế theo vế, ta được:

\(\begin{array}{l}
\Leftrightarrow \frac{{{q^2} - q}}{{{{\left( {q - 1} \right)}^2}}} = 2 \Leftrightarrow \frac{{q\left( {q - 1} \right)}}{{{{\left( {q - 1} \right)}^2}}} = 2\\
\Leftrightarrow \frac{q}{{q - 1}} = 2 \Leftrightarrow q = 2q - 2 \Leftrightarrow q = 2
\end{array}\)

 Với \(q = 2\), thay vào (1) ta có: \(u_1(4 – 2) = 12 ⇔ u_1= 6\)

Lúc đó: \({S_5} = {u_1}{{1 - {q^5}} \over {1 - q}} = 6.{{1 - {2^5}} \over {1 - 2}} = 186\).

loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - ÔN TẬP CUỐI NĂM - ĐẠI SỐ VÀ GIẢI TÍCH 11

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu