Bài 7 trang 179 SGK Đại số và Giải tích 11

Bình chọn:
3.2 trên 5 phiếu

Giải bài 7 trang 179 SGK Đại số và Giải tích 11. Một tiểu đội có 10 người được xếp ngẫu nhiên thành hàng dọc, trong đó có anh A và anh B. Tính xác suất sao cho:

Đề bài

Một tiểu đội có \(10\) người được xếp ngẫu nhiên thành hàng dọc, trong đó có anh \(A\) và anh \(B\). Tính xác suất sao cho:

a) \(A\) và \(B\) đứng liền nhau

b) Trong hai người có một người đứng ở vị trí số 1 và người kia đứng ở vị trí cuối cùng.

Phương pháp giải - Xem chi tiết

a) Buộc A và B và coi đó là một phần tử.

b)

+) Xếp A hoặc B vào vị trí thứ nhất.

+) Xếp người còn lại vào vị trí cuối cùng.

+) Xếp 8 người còn lại.

Lời giải chi tiết

Không gian mẫu của các hoán vị của \(10\) người.

Suy ra: \(n(\Omega ) = 10!\)

a) Gọi \(E\) là biến cố “\(A\) và \(B\) đứng liền nhau”

Vì \(A\) và \(B\) đứng liền nhau nên ta xem \(A\) và \(B\) như một phần tử \(α\)

Số cách sắp xếp thành hàng dọc \(α\) và \(8\) người còn lại là \(9!\) (cách)

Mỗi hoán vị \(A\) và \(B\) cho nhau trong cùng một vị trí xếp hàng  ta có thêm \(2!\) cách xếp khác nhau.

Suy ra: \(n(E) = 9!.2!\)

Vậy: \(P(E) = {{n(E)} \over {n(\Omega )}} = {{9!2!} \over {10!}} = {1 \over 5}\)

b) Gọi \(F\) là biến cố: “Trong hai người có một người đứng ở vị trí số \(1\) và người kia đứng ở vị trí cuối cùng”.

Số cách xếp \(A\) và \(B\) vào vị trí số \(1\) và vị trí cuối là \(2\) (cách).

Số cách xếp người còn lại vào vị trí cuối cùng là 1 cách.

Số cách xếp\( 8\) người còn lại vào \(8\) vị trí còn lại là \(8!\) (cách)

Suy ra: \(n(F) = 2.8!\)

Vậy \(P(F) = {{n(F)} \over {n(\Omega )}} = {{2.8!} \over {10!}} = {1 \over {45}}\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - ÔN TẬP CUỐI NĂM - ĐẠI SỐ VÀ GIẢI TÍCH 11

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu