Bài 1 trang 178 SGK Đại số và Giải tích 11

Bình chọn:
3.6 trên 8 phiếu

Giải bài 1 trang 178 SGK Đại số và Giải tích 11. Chứng minh rằng: cos 2(x + k π) = cos 2x với mọi số nguyên k. Từ đó vẽ đồ thị (C) của hàm số y = cos2x.

Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số \(y = \cos 2x\)

LG a

Chứng minh rằng: \(\cos 2(x + k π) = \cos 2x\) với mọi số nguyên \(k\). Từ đó vẽ đồ thị (C) của hàm số \(y = \cos2x\).

Phương pháp giải:

Sử dụng chu kì tuần hoàn của hàm số cos

Lời giải chi tiết:

Ta có: \(\cos 2(x + k π) = \cos (2x + k2 π) = \cos 2x\).

_ Từ kết quả trên ta suy ra hàm số \(y = cos 2x\) là hàm số tuần hoàn có chu kì là \(π\).

_ Do đó, ta chỉ cần vẽ đồ thị hàm số  \(y = cos2x\) trên \([0, π]\) và tịnh tiến nó song song với  trục \(0x\) các đoạn có độ dài là \(π\).

Bảng giá trị đặc biệt

\(x\)

\(0\)

 \({\pi  \over 4}\)  \({\pi  \over 2}\)

            \({{3\pi } \over 4}\)

\(π\)

\(\cos 2x\)

\(1\)

\(0\)

\(-1\)

\(0\)

\(1\)

Đồ thị hàm số :

LG b

Viết phương trình tiếp tuyến của đồ thị (C)  tại điểm có hoành độ \(x = {\pi  \over 3}\)

Phương pháp giải:

Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x=x_0\) là: \(y - {y_0} = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\)

Lời giải chi tiết:

Ta có: \({x_0} = {\pi  \over 3} \Rightarrow {y_0} = \cos {{2\pi } \over 3} =  - {1 \over 2}\)

Ta lại có:

\(\eqalign{
& f'(x) = - 2\sin 2x \cr 
& \Rightarrow f'({\pi \over 3}) = - 2\sin {{2\pi } \over 3} = - \sqrt 3 \cr} \)

 Vậy phương trình tiếp tuyến cần tìm là:

\(y + {1 \over 2} =  - \sqrt 3 (x - {\pi  \over 3}) \Leftrightarrow y =  - \sqrt 3 x + {{\pi \sqrt 3 } \over 3} - {1 \over 2}\)

LG c

Tìm tập xác định của hàm số \(z = \sqrt {{{1 - \cos 2x} \over {1 + {{\cos }^2}2x}}} \)

Phương pháp giải:

Hàm số \(y = \sqrt {f\left( x \right)} \) xác định \( \Leftrightarrow f\left( x \right) \ge 0\), sử dụng tính chất \(\cos \alpha  \in \left[ { - 1;1} \right]\).

Lời giải chi tiết:

Ta có:

\(|cos 2x| ≤ 1\) nên \(1 – cos 2x ≥ 0 ,∀ x ∈ \mathbb R\).

\( \Rightarrow \dfrac{{1 - \cos 2x}}{{1 + {{\cos }^2}2x}} \ge 0\,\,\forall x \in R\)

Do đó, tập xác định của hàm số \(z\) là \(\mathbb R\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng