Bài 20 trang 181 SGK Đại số và Giải tích 11


Giải bài 20 trang 181 SGK Đại số và Giải tích 11. Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = -1

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho các hàm số: \(f(x) =x^3+ bx^2+ cx + d\) (C)

\( g(x) = x^2– 3x + 1\)

với các số \(b, c, d\) tìm được ở bài 19, hãy:

LG a

Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ \(x = -1\)

Phương pháp giải:

Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x=x_0\) là \(y - {y_0} = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\).

Lời giải chi tiết:

Ở bài 19 cho:

\(\left\{ \matrix{
b = - {1 \over 2} \hfill \cr 
c = 0 \hfill \cr 
d = - {3 \over 2} \hfill \cr} \right.\)

suy ra: \(f(x) = {x^3} - {1 \over {2}}{x^2} - {3 \over 2}(C)\)

Ta có: 

\(\eqalign{
& {x_0} = - 1 \Rightarrow {y_0}={( - 1)^3} - {1 \over 2}{( - 1)^2} - {3 \over 2} = - 3 \cr 
& f'(x) = 3{x^2} - x \Rightarrow f'(-1) = 3.(-1)^2 -(- 1) = 4 \cr} \)

Vậy phương trình tiếp tuyến của (C) tại \(x_0= -1\) là:

\(y + 3 = 4(x + 1) ⇔ y = 4x + 1\)

LG b

Giải phương trình \(f'\left( {\sin x} \right) = 0\)

Phương pháp giải:

Tính \(f'(x)\) và giải phương trình.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& f'(\sin x) = 0 \cr 
& \Leftrightarrow 3.{\sin ^2}x - \sin x = 0 \cr 
& \Leftrightarrow \sin x.(3.\sin x - 1) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
\sin x = 0 \hfill \cr 
\sin x = {1 \over 3} \hfill \cr} \right. \cr 
& \sin x = 0 \Leftrightarrow x = k\pi\,\, (k \in \mathbb Z) \cr 
& \sin x = {1 \over 3} \Leftrightarrow \left[ \matrix{
x = \arcsin {1 \over 3} + k2\pi \hfill \cr 
x = \pi - {\rm{arcsin}}{1 \over 3} + k2\pi \hfill \cr} \right.  \,\,(k \in \mathbb Z)\cr}\)

LG c

Tìm \(\mathop {\lim }\limits_{x \to 0} \dfrac{{f''\left( {\sin 5x} \right) + 1}}{{g'\left( {\sin 3x} \right) + 3}}\)

Phương pháp giải:

Tính \(f''\left( {\sin 5x} \right);\,\,g'\left( {\sin 3x} \right)\), sử dụng giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\)

Lời giải chi tiết:

Tìm \(\mathop {\lim }\limits_{x \to 0} \dfrac{{f''\left( {\sin 5x} \right) + 1}}{{g'\left( {\sin 3x} \right) + 3}}\)

Ta có:

\(f’'(x) = 6x – 1 ⇒ f’’ (\sin 5x) = 6.\sin 5x – 1\)

\(g’(x) = 2x – 3 ⇒ g’(\sin 3x) = 2.\sin 3x – 3\)

Vậy:

\(\eqalign{
& {{f''(\sin 5x) + 1} \over {g'(\sin 3x) + 3}}  \cr &= \dfrac{{6\sin 5x - 1 + 1}}{{2\sin 3x - 3 + 3}}\cr &= {{6.\sin 5x} \over {2.\sin 3x}}\cr & = 5.{{\sin 5x} \over {5x}}.{{3x} \over {\sin 3x}} \cr 
& \Rightarrow \mathop {\lim }\limits_{x \to 0} {{f''(\sin 5x) + 1} \over {g'(\sin 3x) + 3}} \cr 
& = 5.\mathop {\lim }\limits_{x \to 0} {{\sin 5x} \over {5x}}.\mathop {\lim } \limits_{x \to 0}{{{3x} \over {\sin 3x}}} \cr &= 5.1.1 = 5 \cr} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.3 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài