Bài tập 24 trang 136 Tài liệu dạy – học Toán 8 tập 1


Giải bài tập Cho hình 68. Chứng minh rằng tứ giác EFGH là hình thoi.

Đề bài

Cho hình 68. Chứng minh rằng tứ giác EFGH là hình thoi.

Lời giải chi tiết

E, F lần lượt là trung điểm của AB và BC

\( \Rightarrow EF\) là đường trung bình của tam giác ABC

\( \Rightarrow EF//AC\) và \(EF = {1 \over 2}AC\,\,\,\left( 1 \right)\)

H, G lần lượt là trung điểm của AD và DC

\( \Rightarrow HG\) là đường trung bình của tam giác ACD

\( \Rightarrow HG//AC\) và \(HG = {1 \over 2}AC\) (2)

Từ (1) và (2) \( \Rightarrow EF//HG\) và \(EF = HG\).

Vậy tứ giác EFGH là hình bình hành.

Tứ giác ABCD có \(AB = CD\) và \(AD = BC \Rightarrow \) Tứ giác ABCD là hình bình hành.

Mà \(\widehat {BAD} = {90^0} \Rightarrow ABCD\) là hình chữ nhật.

Xét \(\Delta EBF\) và \(\Delta CGF\) có :

\(\eqalign{  & EB = EC\,\,\left( {gt} \right)  \cr  & BF = FC\,\,\left( {gt} \right)  \cr  & \widehat {EBF} = \widehat {GCF}\,\,\left( { = {{90}^0}} \right)  \cr  &  \Rightarrow \Delta EBF = \Delta GCF\,\,\left( {c.g.c} \right) \Rightarrow EF = GF \cr} \)

Chứng minh tương tự ta có \(GF = GH,\,\,GH = EF \Rightarrow EF = GF = GH = EH\)

Do đó tứ giác EFGH là hình thoi.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4 trên 4 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài