Bài 9 trang 119 SGK Toán 8 tập 1


Giải bài 9 trang 119 SGK Toán 8 tập 1. ABCD là một hình vuông cạnh 12cm. AE = x(cm) (h.123).

Đề bài

\(ABCD\) là một hình vuông cạnh \( 12cm\), \(AE = x(cm)\) (h.\(123\)). Tính \(x\) sao cho diện tích tam giác \(ABE\) bằng \(\dfrac{1}{3}\) diện tích hình vuông \(ABCD\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng:

+) Công thức tính diện tích tam giác vuông: Diện tích tam giác vuông bằng nửa tích của hai cạnh góc vuông.

+) Công thức tính diện tích hình vuông: Diện tích hình vuông bằng bình phương cạnh của nó.

Lời giải chi tiết

Diện tích tam giác vuông \(ABE\) là: \(S' = \dfrac{1}{2}AB.A{\rm{E}} = \dfrac{1}{2}.12.x = 6x\left( {c{m^2}} \right)\)

Diện tích hình vuông là: \(S = 12.12 = 144\left( {c{m^2}} \right)\)

Theo đề bài ta có: \(S' = \dfrac{S}{3}\)

\(\Rightarrow 6x = \dfrac{{144}}{3} \)

\(\Rightarrow 6x= 48\)

\( \Rightarrow x = 48:6 = 8\left( {cm} \right)\).

Vậy \(x = 8cm\).

Loigiaihay.com


Bình chọn:
4.1 trên 88 phiếu

Các bài liên quan: - Bài 2. Diện tích hình chữ nhật

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2020 - 2021, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài