Tuyensinh247.com giảm giá 30% tất cả các khóa học các lớp
Xem ngay

Chỉ còn: 1 ngày

Bài 13 trang 119 SGK Toán 8 tập 1

Bình chọn:
4.6 trên 31 phiếu

Giải bài 13 trang 119 SGK Toán 8 tập 1. Cho hình 125, trong đó ABCD là hình chữ nhật, E là một điểm bất kì nằm trên đường chéo AC, FG // AD, và HK // AB.

Đề bài

Cho hình 125, trong đó \(ABCD\) là hình chữ nhật, \(E\) là một điểm bất kì nằm trên đường chéo \(AC, FG // AD\), và \(HK // AB\).

Chứng minh rằng hai hình chữ nhật \(EFBK\) và \(EGDH\) có cùng diện tích.

Phương pháp giải - Xem chi tiết

Áp dụng tính chất: Hai tam giác bằng nhau thì có diện tích bằng nhau.

Lời giải chi tiết

Vì \(FG// AD\) (gt) nên suy ra \(EG//KC\)

Vì \(HK//DC\) (gt) nên suy ra \(EK//GC\) 

\( \Rightarrow \) Tứ giác \(EKCG\) là hình bình hành (dấu hiệu nhận biết hình bình hành)

Mặt khác, \(\widehat {GCK} = {90^0}\) (gt) do đó \(EKCG\) là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)

Tương tự ta cũng chứng minh được \(AHEF\) là hình chữ nhật.

Xét \(\Delta ECG\) và \(\Delta CEK\) có:

+) \(EG=KC\) (vì \(EKCG\) là hình chữ nhật)

+) \(EC\) chung (gt)

+) \(EK=CG\) (vì \(EKCG\) là hình chữ nhật)

\(\Rightarrow \Delta ECG = \Delta CEK\) (c-c-c)

Do đó: \({S_{ECG}} = {S_{CEK}}\) (Hai tam giác bằng nhau thì có diện tích bằng nhau)

Tương tự:

\(ABCD\) là hình chữ nhật  ta có:

\({S_{ ADC}} = {S_{CBA}}\)

\(AHEF\) là hình chữ nhật  ta có:

\({S_{AHE}} = {S_{ EFA}}\)

\(\eqalign{
& {S_{ADC}} = {S_{AHE}} + {S_{EGDH}} + {S_{ECG}} \cr
& {S_{CBA}} = {S_{EFA}} + {S_{EFBK}} + {S_{CEK}} \cr} \)

\(\Rightarrow {S_{AHE}} + {S_{EGDH}} + {S_{ECG}} = {S_{EFA}} \)\(+ {S_{EFBK}} + {S_{CEK}}\) 

\(\Rightarrow {S_{EGDH}} = {S_{EFBK}}\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan