Bài 8 trang 132 SGK Toán 9 tập 2

Bình chọn:
3.6 trên 5 phiếu

Giải bài 8 trang 132 SGK Toán 9 tập 2. Chứng minh rằng khi k thay đổi, các đường thẳng (k + 1)x – 2y = 1 luôn đi qua một điểm cố định. Tìm điểm cố định đó.

Đề bài

Chứng minh rằng khi \(k\) thay đổi, các đường thẳng \((k + 1)x – 2y = 1\) luôn đi qua một điểm cố định. Tìm điểm cố định đó.

Phương pháp giải - Xem chi tiết

+) Gọi \(M(x_0;\, y_0)\) là điểm cố định thuộc đồ thị hàm số.

+) Khi đó phương trình đường thẳng đã cho thỏa mãn với mọi \(k \in R.\)

+) Khi đó ta đưa phương trình đường thẳng đã cho về dạng: \(0k=0\) để tìm \(k.\)

+) Từ đó ta tìm được \(x_0\) và \(y_0\) hay tọa độ điểm \(M\) cố định.

Lời giải chi tiết

Gọi \(M(x_0;\, y_0)\) là điểm cố định thuộc đồ thị hàm số. Khi đó ta có: 

\(\begin{array}{l}
\;\;\;\;\left( {k + 1} \right){x_0} - 2{y_0} = 1\;\;\forall \;k \in R\\
\Leftrightarrow k{x_0} + {x_0} - 2{y_0} = 1\;\forall \;k \in R\\
\Leftrightarrow k{x_0} = 1 - {x_0} + 2{y_0}\;\;\;\forall \;k \in R\\
\Leftrightarrow \left\{ \begin{array}{l}
{x_0} = 0\\
1 - {x_0} + 2{y_0} = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{x_0} = 0\\
{y_0} = - \frac{1}{2}
\end{array} \right.\\ \Rightarrow M\left( {0; - \frac{1}{2}} \right).
\end{array}\)

Vậy đường thẳng đã cho luôn đi qua điểm \(M\left( {0; - \frac{1}{2}} \right)\) với mọi \(k \in R.\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

Các bài liên quan: - Ôn tập cuối năm - Đại số - Toán 9

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa . Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu