Bài 10 trang 133 SGK Toán 9 tập 2


Giải bài 10 trang 133 SGK Toán 9 tập 2. Giải các hệ phương trình:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ phương trình:

LG a

\(\left\{ \matrix{2\sqrt {x - 1} - \sqrt {y - 1} = 1 \hfill \cr \sqrt {x - 1} + \sqrt {y - 1} = 2 \hfill \cr} \right.\)

Phương pháp giải:

+) Đặt điều kiện để hệ phương trình có nghĩa.

+) Giải hệ phương trình bằng phương pháp đặt ẩn phụ.

Chú ý: Đặt điều kiện cho ẩn phụ nếu cần.

Lời giải chi tiết:

\(\left\{ \matrix{2\sqrt {x - 1} - \sqrt {y - 1} = 1 \hfill \cr \sqrt {x - 1} + \sqrt {y - 1} = 2 \hfill \cr} \right.\)

Điều kiện: \(x \geq 1\) và \(y \geq 1.\)

Đặt \(X = \sqrt {x - 1}\) (điều kiện \(X ≥ 0\))

\(Y = \sqrt {y - 1}\) (điều kiện \(Y ≥ 0\))

Thay vào phương trình ta được:

\(\eqalign{
& \left\{ \matrix{
2X - Y = 1 \hfill \cr 
X + Y = 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
3{\rm{X}} = 3 \hfill \cr 
X + Y = 2 \hfill \cr} \right.\cr& \Leftrightarrow \left\{ \matrix{
X = 1  \, \, (tm)\hfill \cr 
Y = 1 \, \, (tm) \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
\sqrt {x - 1} = 1 \hfill \cr 
\sqrt {y - 1} = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x - 1 = 1 \hfill \cr 
y - 1 = 1 \hfill \cr} \right.\cr& \Leftrightarrow \left\{ \matrix{
x = 2 \, \, (tm)\hfill \cr 
y = 2 \, \, (tm)\hfill \cr} \right. \cr} \) 

Vậy \((2;2)\) là nghiệm của hệ phương trình

LG b

\(\left\{ \matrix{{\left( {x - 1} \right)^2} - 2y = 2 \hfill \cr 3{\left( {x - 1} \right)^2} + 3y = 1 \hfill \cr} \right.\)

Phương pháp giải:

+) Đặt điều kiện để hệ phương trình có nghĩa.

+) Giải hệ phương trình bằng phương pháp đặt ẩn phụ.

Chú ý: Đặt điều kiện cho ẩn phụ nếu cần.

Lời giải chi tiết:

\(\left\{ \matrix{{\left( {x - 1} \right)^2} - 2y = 2 \hfill \cr 3{\left( {x - 1} \right)^2} + 3y = 1 \hfill \cr} \right.\)

Đặt \(X = (x – 1)^2\)(điều kiện \(X ≥ 0\)). Khi đó:

\(\begin{array}{l}
Hpt \Leftrightarrow \left\{ \begin{array}{l}
X - 2y = 2\\
3X + 3y = 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
X = 2 + 2y\\
3\left( {2 + 2y} \right) + 3y = 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
X = 2 + 2y\\
6 + 6y + 3y = 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
X = 2 + 2y\\
9y = - 5
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
X = 2 + 2y\\
y = - \dfrac{5}{9}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
X = \frac{8}{9}\;\;\left( {tm} \right)\\
y = - \frac{5}{9}
\end{array} \right.\\
\Rightarrow {\left( {x - 1} \right)^2} = \dfrac{8}{9} \Leftrightarrow \left[ \begin{array}{l}
x - 1 = \dfrac{{2\sqrt 2 }}{3}\\
x - 1 = - \dfrac{{2\sqrt 2 }}{3}
\end{array} \right. \\ \Leftrightarrow \left[ \begin{array}{l}
x = 1 + \dfrac{{2\sqrt 2 }}{3}\\
x = 1 - \dfrac{{2\sqrt 2 }}{3}
\end{array} \right..
\end{array}\)  

Vậy hệ phương trình có hai nghiệm: \(\displaystyle \left( {1 + {{2\sqrt 2 } \over 3}; - {5 \over 9}} \right)\) và \(\displaystyle \left( {1 - {{2\sqrt 2 } \over 3}; - {5 \over 9}} \right)\)  

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.5 trên 11 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài