Bài 3 trang 132 SGK Toán 9 tập 2

Bình chọn:
3.3 trên 6 phiếu

Giải bài 3 trang 132 SGK Toán 9 tập 2. Giá trị của biểu thức:

Đề bài

 Giá trị của biểu thức \({{2\left( {\sqrt 2  + \sqrt 6 } \right)} \over {3\sqrt {2  + \sqrt 3 }}}\) bằng

(A) \(\displaystyle {{2\sqrt 2 } \over 3}\)         (B) \(\displaystyle {{2\sqrt 3 } \over 3}\)          (C) 1                (D)\(\displaystyle {4 \over 3}\) 

Hãy chọn câu trả lời đúng.

Phương pháp giải - Xem chi tiết

+) Sử dụng các công thức hằng đẳng thức và khai phương căn bậc hai để rút gọn biểu thức.

Lời giải chi tiết

Ta có: 

\(\eqalign{
& {{2\left( {\sqrt 2 + \sqrt 6 } \right)} \over {3\sqrt {2 + \sqrt 3 }}} = {{2\left( {\sqrt 2 + \sqrt 6 } \right).\sqrt 2 } \over {(3\sqrt{ 2 + \sqrt 3} }) .\sqrt 2 } \cr
& = {{2\left( {2 + 2\sqrt 3 } \right)} \over {3.\sqrt {\left( {2 + \sqrt 3 } \right).2} }} = {{2\left( {2 + 2\sqrt 3 } \right)} \over {3.\sqrt {4 + 2\sqrt 3 } }} \cr
& = {{2\left( {2 + 2\sqrt 3 } \right)} \over {3.\sqrt {{{\left( {\sqrt 3 } \right)}^2} + 2\sqrt 3 .1 + {1^2}} }} = {{4\left( {1 + \sqrt 3 } \right)} \over {3.\sqrt {{{\left( {1 + \sqrt 3 } \right)}^2}} }} \cr
& = {{4\left( {1 + \sqrt 3 } \right)} \over {3\left( {1 + \sqrt 3 } \right)}} = {4 \over 3}. \cr} \)

Chọn đáp án D.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com