Bài 5 trang 132 SGK Toán 9 tập 2>
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào biến:
Đề bài
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào biến:
\(\displaystyle \left( {{{2 + \sqrt x } \over {x + 2\sqrt x + 1}} - {{\sqrt x - 2} \over {x - 1}}} \right).{{x\sqrt x + x - \sqrt x - 1} \over {\sqrt x }}.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+) Tìm điều kiện để biểu thức xác định.
+) Sử dụng các hằng đẳng thức và quy đồng mẫu các phân thức để rút gọn biểu thức.
Lời giải chi tiết
ĐKXĐ: \(0 < x ≠ 1\).
\(\begin{array}{l}
\left( {\dfrac{{2 + \sqrt x }}{{x + 2\sqrt x + 1}} - \dfrac{{\sqrt x - 2}}{{x - 1}}} \right).\dfrac{{x\sqrt x + x - \sqrt x - 1}}{{\sqrt x }}\\
= \left[ {\dfrac{{2 + \sqrt x }}{{{{\left( {\sqrt x + 1} \right)}^2}}} - \dfrac{{\sqrt x - 2}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}} \right].\dfrac{{x\left( {\sqrt x + 1} \right) - \left( {\sqrt x + 1} \right)}}{{\sqrt x }}\\
= \dfrac{{\left( {2 + \sqrt x } \right)\left( {\sqrt x - 1} \right) - \left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}}{{{{\left( {\sqrt x + 1} \right)}^2}\left( {\sqrt x - 1} \right)}}.\dfrac{{\left( {\sqrt x + 1} \right)\left( {x - 1} \right)}}{{\sqrt x }}\\
= \dfrac{{x + \sqrt x - 2 - \left( {x - \sqrt x - 2} \right)}}{{\left( {\sqrt x + 1} \right)\left( {x - 1} \right)}}.\dfrac{{\left( {x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\sqrt x }}\\
= \dfrac{{x + \sqrt x - 2 - x + \sqrt x + 2}}{{\sqrt x }} = \dfrac{{2\sqrt x }}{{\sqrt x }} = 2.
\end{array}\)
Vậy giá trị của biểu thức đã cho là \(2\) và không phụ thuộc vào giá trị của biến \(x.\)
Loigiaihay.com
Các bài khác cùng chuyên mục





Danh sách bình luận