Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Bài 73 trang 40 SGK Toán 9 tập 1>
Rút gọn rồi tính giá trị của các biểu thức sau:
Video hướng dẫn giải
Rút gọn rồi tính giá trị của các biểu thức sau:
LG a
\(\sqrt { - 9{\rm{a}}} - \sqrt {9 + 12{\rm{a}} + 4{{\rm{a}}^2}}\) tại \(a = - 9\)
Phương pháp giải:
Sử dụng công thức: \(\sqrt {{A^2}} = \left| A \right|\)
Lời giải chi tiết:
\(\eqalign{
& \sqrt { - 9{\rm{a}}} - \sqrt {9 + 12{\rm{a}} + 4{{\rm{a}}^2}} \cr &= \sqrt { - 9{\rm{a}}} - \sqrt {3^2 + 2.3.2a + ({{\rm{2a}})^2}} \cr
& = \sqrt {{3^2}.\left( { - a} \right)} - \sqrt {{{\left( {3 + 2a} \right)}^2}} \cr
& = 3\sqrt { - a} - \left| {3 + 2a} \right|\cr&\text{Thay a = - 9 ta được} \cr
& 3\sqrt 9 - \left| {3 + 2.\left( { - 9} \right)} \right| \cr
& = 3.3 - |-15|= 9 - 15 = - 6 \cr} \)
LG b
\(\displaystyle 1 + {{3m} \over {m - 2}}\sqrt {{m^2} - 4m + 4}\) tại \(m = 1,5\)
Phương pháp giải:
Sử dụng công thức: \(\sqrt {{A^2}} = \left| A \right|\)
Lời giải chi tiết:
Điều kiện \(m\ne 2\)
\(\eqalign{
& 1 + {{3m} \over {m - 2}}\sqrt {{m^2} - 4m + 4} \cr & =1 + {{3m} \over {m - 2}}\sqrt {{m^2} - 2.2.m + 2^2} \cr
& = 1 + {{3m} \over {m - 2}}\sqrt {{{\left( {m - 2} \right)}^2}} \cr
& = 1 + {{3m\left| {m - 2} \right|} \over {m - 2}} \cr} \)
\( = \left\{ \matrix{
1 + 3m\left( {với\,\, m - 2 > 0} \right) \hfill \cr
1 - 3m\left( {với \,\,m - 2 < 0} \right) \hfill \cr} \right. \)
\(= \left\{ \matrix{
1 + 3m\left( {với\,\, m> 2} \right) \hfill \cr
1 - 3m\left( {với \,\,m < 2} \right) \hfill \cr} \right.\)
\(m = 1,5 < 2.\)
Vậy giá trị biểu thức tại \(m = 1,5\) là \(1 – 3m = 1 - 3.1,5 = -3,5\)
LG c
\(\sqrt {1 - 10{\rm{a}} + 25{{\rm{a}}^2}} - 4{\rm{a}}\) tại \(a = \sqrt 2\)
Phương pháp giải:
Sử dụng công thức: \(\sqrt {{A^2}} = \left| A \right|\)
Lời giải chi tiết:
\(\eqalign{
& \sqrt {1 - 10{\rm{a}} + 25{{\rm{a}}^2}} - 4{\rm{a}} \cr & =\sqrt {1 - 2.1.5{\rm{a}} + (5{{\rm{a}})^2}} - 4{\rm{a}} \cr
& {\rm{ = }}\sqrt {{{\left( {1 - 5{\rm{a}}} \right)}^2}} - 4{\rm{a}} \cr
& {\rm{ = }}\left| {1 - 5{\rm{a}}} \right| - 4{\rm{a}} \cr
& = \left\{ \matrix{
1 - 5{\rm{a}} - 4{\rm{a}}\left( {với\,\, 1 - 5{\rm{a}} \ge 0} \right) \hfill \cr
5{\rm{a}} - 1 - 4{\rm{a}}\left( {với\,\, 1 - 5{\rm{a}} < 0} \right) \hfill \cr} \right. \cr
& = \left\{ \matrix{
1 - 9{\rm{a}}\left( {với\,\, a \le {\displaystyle 1 \over \displaystyle 5}} \right) \hfill \cr
a - 1\left( {với\,\, a > {\displaystyle 1 \over \displaystyle 5}} \right) \hfill \cr} \right. \cr} \)
Vì \(\displaystyle a= \sqrt 2 > {1 \over 5}\) .
Vậy giá trị của biểu thức tại \(a=\sqrt 2\) là \(a - 1 = \sqrt 2 - 1\)
LG d
\(4{\rm{x}} - \sqrt {9{{\rm{x}}^2} + 6{\rm{x}} + 1} \) tại \(x= - \sqrt 3\)
Phương pháp giải:
Sử dụng công thức: \(\sqrt {{A^2}} = \left| A \right|\)
Lời giải chi tiết:
\(\eqalign{
& 4{\rm{x}} - \sqrt {9{{\rm{x}}^2} + 6{\rm{x}} + 1} \cr & 4{\rm{x}} - \sqrt {(3{{\rm{x}})^2} + 2.3{\rm{x}} + 1} \cr
& = 4{\rm{x}} - \sqrt {{{\left( {3{\rm{x}} + 1} \right)}^2}} \cr
& = 4{\rm{x}} - \left| {3{\rm{x}} + 1} \right| \cr
& = \left\{ \matrix{
4{\rm{x - }}\left( {3{\rm{x}} + 1} \right)\left( {với\, 3{\rm{x}} + 1 \ge 0} \right) \hfill \cr
4{\rm{x}} + \left( {3{\rm{x}} + 1} \right)\left( {với\, 3{\rm{x}} + 1 < 0} \right) \hfill \cr} \right. \cr
& = \left\{ \matrix{
4{\rm{x}} - 3{\rm{x}} - 1\left( {với \,3{\rm{x}} \ge - 1} \right) \hfill \cr
4{\rm{x}} + 3{\rm{x}} + 1\left( {với \,3{\rm{x}} < - 1} \right) \hfill \cr} \right. \cr
& = \left\{ \matrix{
x - 1\left( {v{\rm{ới \,x}} \ge - {1 \over 3}} \right) \hfill \cr
7{\rm{x}} + 1\left( {với \,x < - {1 \over 3}} \right) \hfill \cr} \right. \cr} \)
Vì \( \displaystyle x=- \sqrt 3 < - {1 \over 3}\) .
Giá trị của biểu thức tại \( x=- \sqrt 3\) là \(7x+1=7.( - \sqrt 3 ) + 1 = - 7\sqrt 3 + 1\)
Chú ý: Các em có thể không phá dấu giá trị tuyệt đối mà thay trực tiếp giá trị của biến vào.
Loigiaihay.com
Các bài khác cùng chuyên mục





Danh sách bình luận