Bài 59 trang 92 SGK Toán 8 tập 2

Bình chọn:
4 trên 55 phiếu

Giải bài 59 trang 92 SGK Toán 8 tập 2. Hình thang ABCD (AB//CD) có AC và BD cắt nhau tại O, AD và BC cắt nhau tại K. Chứng minh rằng OK đi qua trung điểm của các cạnh AB và CD.

Đề bài

Hình thang \(ABCD \,(AB//CD)\) có \(AC\) và \(BD\) cắt nhau tại \(O, AD\) và \(BC\) cắt nhau tại \(K\). Chứng minh rằng \(OK\) đi qua trung điểm của các cạnh \(AB\) và \(CD\).

Phương pháp giải - Xem chi tiết

Áp dụng hệ quả của định lí TaLet.

Lời giải chi tiết

Qua \(O\) kẻ đường thẳng song song với \(AB, CD\) cắt \(AD, BC\) lần lượt tại \(E, F\).

Ta có: \(OE // DC\) (gt)

\( \Rightarrow \dfrac{{OE}}{{DC}} = \dfrac{{AO}}{{AC}}\left( 1 \right)\) (hệ quả của định lí TaLet)

\(OF // DC\) (gt)

\( \Rightarrow \dfrac{{OF}}{{DC}} = \dfrac{{BO}}{{BD}}\left( 2 \right)\) (hệ quả của định lí TaLet)

\(AB // DC\) (gt)

\( \Rightarrow \dfrac{{OA}}{{OC}} = \dfrac{{OB}}{{OD}}\) (hệ quả của định lí TaLet)

\(\eqalign{
& \Rightarrow {{OC} \over {OA}} = {{OB} \over {OD}} \cr
& \Rightarrow {{OC} \over {OA}} + 1 = {{OD} \over {OB}} + 1 \cr
& \Rightarrow {{OC + OA} \over {OA}} = {{OD + OB} \over {OB}} \cr
& \Rightarrow {{AC} \over {OA}} = {{BD} \over {OB}} \cr
& \Rightarrow {{OA} \over {AC}} = {{OB} \over {BD}}\,\,\,\,(3) \cr} \)

Từ (1), (2) và (3) ta có: 

\(\dfrac{{OE}}{{DC}} = \dfrac{{OF}}{{DC}} \Rightarrow OE = OF\)

Ta có: \(AB//EF\) (gt) áp dụng hệ quả của định lí TaLet ta có:

\(\begin{array}{l}
\Rightarrow \dfrac{{AN}}{{EO}} = \dfrac{{KN}}{{K{\rm{O}}}};\,\dfrac{{BN}}{{F{\rm{O}}}} = \dfrac{{KN}}{{K{\rm{O}}}}\\
\Rightarrow \dfrac{{AN}}{{EO}} = \dfrac{{BN}}{{F{\rm{O}}}} \\\text{Mà  } EO=FO\\ \Rightarrow AN = BN
\end{array}\)

\( \Rightarrow \) \(N\) là trung điểm của \(AB.\)

Tương tự ta có: \(EF // DC\) (gt) áp dụng hệ quả của định lí TaLet ta có:

\(\begin{array}{l}
\Rightarrow \dfrac{{EO}}{{DM}} = \dfrac{{KO}}{{K{\rm{M}}}};\,\dfrac{{FO}}{{C{\rm{M}}}} = \dfrac{{KO}}{{K{\rm{M}}}}\\
\Rightarrow \dfrac{{EO}}{{DM}} = \dfrac{{FO}}{{C{\rm{M}}}}\\\text{Mà  }EO=FO\\ \Rightarrow DM = CM
\end{array}\)

\( \Rightarrow M\) là trung điểm của \(CD\).

Vậy \(OK\) đi qua trung điểm của các cạnh \(AB\) và \(CD\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.