

Bài 57 trang 92 SGK Toán 8 tập 2>
Đề bài
Cho tam giác \(ABC (AB < AC)\). Vẽ đường cao \(AH\), đường phân giác \(AD\), đường trung tuyến \(AM\). Có nhận xét gì về vị trí của ba điểm \(H, D, M\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng: Tính chất đường phân giác của tam giác, quan hệ giữa cạnh và góc trong tam giác.
Lời giải chi tiết
+ Nhận xét: \(D\) luôn nằm giữa \(H\) và \(M\).
+ Chứng minh:
\(AD\) là đường phân giác của \(∆ABC\).
\(\Rightarrow \dfrac{{AB}}{{AC}} = \dfrac{{DB}}{{DC}}\) (tính chất đường phân giác của tam giác)
Mà \(AB < AC\) (giả thiết)
\( \Rightarrow DB < DC\) \( \Rightarrow DB + DC < DC + DC\)
\( \Rightarrow BD + DC < 2DC\) hay \(BC < 2DC\)
\( \Rightarrow DC >\dfrac{{BC}}{2}\)
Mà \(MC = \dfrac{{BC}}{2}\) (\(M\) là trung điểm của \(BC\))
\( \Rightarrow DC > MC\) \( \Rightarrow M \) nằm giữa \(D\) và \(C\) (1)
+ Mặt khác: \(\widehat {CAH} = {90^0} - \hat C\) (\(∆CAH\) vuông tại \(H\))
\(\hat A + \hat B + \hat C = {180^0}\) (tổng 3 góc ∆ABC)
\( \Rightarrow \widehat {CAH} = \dfrac{{\widehat A + \widehat B + \widehat C}}{2} - \widehat C\)
\( \Rightarrow \widehat {CAH} = \dfrac{{\widehat A}}{2} + \dfrac{{\widehat B}}{2} - \dfrac{{\widehat C}}{2}\)\(\, = \dfrac{{\widehat A}}{2} + \dfrac{{\widehat B - \widehat C}}{2}\)
Vì \(AB < AC\) \( \Rightarrow \widehat C < \widehat B\) ( quan hệ giữa cạnh và góc đối diện trong tam giác)
\(\Rightarrow \frac{\widehat B - \widehat C}{2} > 0\)
Do đó: \(\widehat {CAH} > \dfrac{{\widehat A}}{2}\) hay \(\widehat {CAH} > \widehat {CAD}\)
\( \Rightarrow \) Tia \(AD\) nằm giữa hai tia \(AH\) và \(AC\)
Do đó \(D\) nằm giữa hai điểm \(H\) và \(C\) (2)
Từ (1) và (2) suy ra \(D\) nằm giữa \(H\) và \(M.\)
Loigiaihay.com


- Bài 58 trang 92 SGK Toán 8 tập 2
- Bài 59 trang 92 SGK Toán 8 tập 2
- Bài 60 trang 92 SGK Toán 8 tập 2
- Bài 61 trang 92 SGK Toán 8 tập 2
- Lý thuyết Ôn tập chương 3. Tam giác đồng dạng
>> Xem thêm
- Lý thuyết đường trung bình của tam giác, của hình thang
- Lý thuyết tính chất đường phân giác của tam giác
- Lý thuyết định lí đảo và hệ quả của định lí Talet
- Lý thuyết diện tích xung quanh của hình lăng trụ đứng
- Lý thuyết bất phương trình bậc nhất một ẩn
- Lý thuyết nhân đa thức với đa thức
- Lý thuyết chia đa thức cho đơn thức
- Lý thuyết diện tích xung quanh của hình chóp
- Lý thuyết Hình bình hành
- Lý thuyết đối xứng trục