Bài 45 trang 124 SGK Toán 8 tập 2>
Tính thể tích của mỗi hình chop đều dưới đây
Đề bài
Tính thể tích của mỗi hình chóp đều dưới đây (h130, h131).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Tính thể tích hình chóp theo công thức: \(V = \dfrac{1}{3} .S.h\), trong đó \(S\) là diện tích đáy, \(h\) là chiều cao.
Lời giải chi tiết
+) Hình 130
Đáy của hình chóp là tam giác đều cạnh bằng \(10cm\) như hình vẽ:
Đường cao của tam giác đều \(BDC\) là:
\(h= HD =\sqrt{DC^{2} - HC^{2}} \) \(= \sqrt{DC^{2} -{\left( {\dfrac{{BC}}{2}} \right)^2}} \)
\(= \sqrt{10^{2} - 5^{2}} = \sqrt{75}\approx 8,66 (cm) \)
Diện tích đáy của hình chóp đều là:
\(S= \dfrac{1}{2}. BC. h = \dfrac{1}{2}. 10. 8,66 =43,3 \) \((cm^2) \)
Thể tích hình chóp đều là:
\( V= \dfrac{1}{3} .S.AO = \dfrac{1}{3} .43,3 .12 =173,2 \) \((cm^3)\)
+) Hình 131:
Đáy của hình chóp là tam giác đều cạnh bằng \(8cm\) như hình vẽ:
Đường cao của tam giác đều \(BDC\) là:
\(h= HD =\sqrt{DC^{2} - HC^{2}} \) \(= \sqrt{DC^{2} - {\left( {\dfrac{{BC}}{2}} \right)^2}} \)
\(= \sqrt{8^{2} - 4^{2}} = \sqrt{48}\approx 6,93 (cm) \)
Diện tích đáy của hình chóp đều là:
\(S= \dfrac{1}{2}. BC. h = \dfrac{1}{2}. 8. 6,93 =27,72 \) \((cm^2) \)
Thể tích hình chóp đều là:
\( V= \dfrac{1}{3} .S.AO = \dfrac{1}{3} .27,72 .16,2 \)\(\,\approx 149,69\) \( (cm^3)\)
Loigiaihay.com
- Bài 46 trang 124 SGK Toán 8 tập 2
- Bài 47 trang 124 SGK Toán 8 tập 2
- Bài 48 trang 125 SGK Toán 8 tập 2
- Bài 49 trang 125 SGK Toán 8 tập 2
- Bài 50 trang 125 SGK Toán 8 tập 2
>> Xem thêm