Bài 40 trang 53 SGK Toán 8 tập 1


Rút gọn biểu thức sau theo hai cách (sử dụng và không sử dụng tính chất phân phối của phép nhân đối với phép cộng:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Rút gọn biểu thức sau theo hai cách (sử dụng và không sử dụng tính chất phân phối của phép nhân đối với phép cộng):

\(\dfrac{{x - 1}}{x}.\left( {{x^2} + x + 1 + \dfrac{{{x^3}}}{{x - 1}}} \right)\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Áp dụng tính chất phân phối của phép nhân đối với phép cộng:

\(\dfrac{A}{B}.\left( {\dfrac{C}{D} + \dfrac{G}{H}} \right) = \dfrac{A}{B}.\dfrac{C}{D} + \dfrac{A}{B}.\dfrac{G}{H}\)

- Áp dụng quy tắc nhân hai phân thức:

\( \dfrac{A}{B}.\dfrac{C}{D}=\dfrac{A.C}{B.D}\)

Lời giải chi tiết

Cách 1: Áp dụng tính phân phối:  

\(\dfrac{{x - 1}}{x}.\left( {{x^2} + x + 1 + \dfrac{{{x^3}}}{{x - 1}}} \right)\)

\( = \dfrac{{x - 1}}{x}.\left[ {\left( {{x^2} + x + 1} \right) + \dfrac{{{x^3}}}{{x - 1}}} \right]\)

\( = \dfrac{{x - 1}}{x}.\left( {{x^2} + x + 1} \right) + \dfrac{{x - 1}}{x}.\dfrac{{{x^3}}}{{x - 1}}\)

\( =\dfrac{(x-1)(x^{2}+x+1)}{x}+\dfrac{(x-1)x^{3}}{x(x-1)}\)

\( =\dfrac{x^{3}-1}{x}+\dfrac{x^{3}}{x}\)

\(=\dfrac{x^{3}-1+x^{3}}{x}=\dfrac{2x^{3}-1}{x}\)

Cách 2: Không áp dụng tính phân phối:

\(\dfrac{{x - 1}}{x}.\left( {{x^2} + x + 1 + \dfrac{{{x^3}}}{{x - 1}}} \right)\)

\( = \dfrac{{x - 1}}{x}.\left( {\dfrac{{({x^2} + x + 1)(x - 1)}}{{x - 1}} + \dfrac{{{x^3}}}{{x - 1}}} \right)\)

\( =\dfrac{x-1}{x}.\left( {\dfrac{{{x^3} - 1}}{{x - 1}} + \dfrac{{{x^3}}}{{x - 1}}} \right)\)

\(=\dfrac{x-1}{x}.\dfrac{x^{3}-1+x^{3}}{x-1}\)

\( =\dfrac{(x-1)(2x^{3}-1)}{x(x-1)}=\dfrac{2x^{3}-1}{x}\)

Loigiaihay.com


Bình chọn:
4.6 trên 115 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí