Bài 4 trang 7 SGK Toán 8 tập 2

Bình chọn:
4.3 trên 141 phiếu

Giải bài 4 trang 7 SGK Toán 8 tập 2. Nối mỗi phương trình sau với các nghiệm của nó:

Đề bài

Nối mỗi phương trình sau với các nghiệm của nó:

Phương pháp giải - Xem chi tiết

- Thay các giá trị của \(x=-1\), \(x=2\) và \(x=3\) vào từng phương trình (a), (b), (c); giá trị nào thỏa mãn phương trình thì là nghiệm của phương trình đó.

Lời giải chi tiết

 *) Xét phương trình \(3(x-1)=2x-1\;\;\;\;\;(1)\)

+) Thay \(x=-1\) vào vế trái và vế phải của phương trình (1) ta được:

\(\eqalign{
& VT = 3.\left( { - 1 - 1} \right) = 3.\left( { - 2} \right) = - 6 \cr
& VP = 2.\left( { - 1} \right) - 1 = - 2 - 1 = - 3 \cr} \)

\( - 6 \ne  - 3 \Rightarrow VT \ne VP\)

Vậy \(x=-1\) không là nghiệm của phương trình (1)

+) Thay \(x=2\) vào vế trái và vế phải của phương trình (1) ta được:

\(\eqalign{
& VT = 3.\left( {2 - 1} \right) = 3.1 = 3 \cr
& VP = 2.2 - 1 = 4 - 1 = 3 \cr} \)

\(3 = 3 \Rightarrow VT = VP\)

Vậy \(x=2\) là nghiệm của phương trình (1)

+) Thay \(x=3\) vào vế trái và vế phải của phương trình (1) ta được:

\(\eqalign{
& VT = 3.\left( {3 - 1} \right) = 3.2 = 6 \cr
& VP = 2.3 - 1 = 6 - 1 = 5 \cr} \)

\(6 \ne 5 \Rightarrow VT \ne VP\)

Vậy \(x=3\) không là nghiệm của phương trình (1)

*) Xét phương trình \(\dfrac{1}{{x + 1}} = 1 - \dfrac{x}{4}\;\;\;\;\;(2)\) 

+) Với \(x=-1\) thì phương trình (2) không xác định nên \(x=-1\) không là nghiệm của phương trình (2)

+) Thay \(x=2\) vào vế trái và vế phải của phương trình (2) ta được:

\(\eqalign{
& VT = {1 \over {2 + 1}} = {1 \over 3} \cr
& VP = 1 - {2 \over 4} = 1 - {1 \over 2} = {1 \over 2} \cr} \)

\(\dfrac{1}{3} \ne \dfrac{1}{2} \Rightarrow VT \ne VP\)

Vậy \(x=2\) không là nghiệm của phương trình (2)

+) Thay \(x=3\) vào vế trái và vế phải của phương trình (2) ta được:

\(\eqalign{
& VT = {1 \over {3 + 1}} = {1 \over 4} \cr
& VP = 1 - {3 \over 4} = {4 \over 4} - {3 \over 4} = {1 \over 4} \cr} \)

\(\dfrac{1}{4} = \dfrac{1}{4} \Rightarrow VT = VP\)

Vậy \(x=3\) là nghiệm của phương trình (2)

*) Xét phương trình \({x^2} - 2x - 3 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,(3)\)

+) Thay \(x=-1\) vào vế trái và vế phải của phương trình (3) ta được:

\(\eqalign{
& VT = {\left( { - 1} \right)^2} - 2.\left( { - 1} \right) - 3\cr&\;\;\;\;\;\;\; = 1 + 2 - 3 = 0 \cr
& VP = 0 \cr} \)

\(0 = 0 \Rightarrow VT = VP\)

Vậy \(x=-1\) là nghiệm của phương trình (3)

+) Thay \(x=2\) vào vế trái và vế phải của phương trình (3) ta được:

\(\eqalign{
& VT = {2^2} - 2.2 - 3 = 4 - 4 - 3 = - 3 \cr
& VP = 0 \cr} \)

\( - 3 \ne 0 \Rightarrow VT \ne VP\)

Vậy \(x=2\) không là nghiệm của phương trình (3)

+) Thay \(x=3\) vào vế trái và vế phải của phương trình (3) ta được:

\(\eqalign{
& VT = {3^2} - 2.3 - 3 = 9 - 6 - 3 = 0 \cr
& VP = 0 \cr} \)

\(0 = 0 \Rightarrow VT = VP\)

Vậy \(x=3\) là nghiệm của phương trình (3)

Ta nối như sau:


Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com