Bài 22 trang 17 SGK Toán 8 tập 2


Bằng cách phân tích vế trái thành nhân tử, giải các phương trình sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Bằng cách phân tích vế trái thành nhân tử, giải các phương trình sau:

LG a.

\(2x(x - 3) + 5(x - 3) = 0\) 

Phương pháp giải:

Áp dụng: 

- Các phương pháp nhóm, đặt nhân tử chung, hằng đẳng thức để biến đổi vế trái thành nhân tử.

- Phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

\(\eqalign{
& \,2x\left( {x - 3} \right) + 5\left( {x - 3} \right) = 0 \cr 
& \Leftrightarrow \left( {x - 3} \right)\left( {2x + 5} \right) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
x - 3 = 0 \hfill \cr 
2x + 5 = 0 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = 3 \hfill \cr 
2x = - 5 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = 3 \hfill \cr 
x = \dfrac{{ - 5}}{2} \hfill \cr} \right. \cr} \)

Vậy tập nghiệm của phương trình là \(S = \left\{ {3;\dfrac{{ - 5}}{2}} \right\}\)

LG b.

\(\left( {{x^2} - 4} \right) + \left( {x - 2} \right)\left( {3 - 2x} \right) = 0\)

Phương pháp giải:

Áp dụng: 

- Các phương pháp nhóm, đặt nhân tử chung, hằng đẳng thức để biến đổi vế trái thành nhân tử.

- Phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

\(\eqalign{
& \,\left( {{x^2} - 4} \right) + \left( {x - 2} \right)\left( {3 - 2x} \right) = 0 \cr 
& \Leftrightarrow \left( {x - 2} \right)\left( {x + 2} \right) + \left( {x - 2} \right)\left( {3 - 2x} \right) = 0 \cr 
& \Leftrightarrow \left( {x - 2} \right)\left[ {\left( {x + 2} \right) + \left( {3 - 2x} \right)} \right] = 0 \cr 
& \Leftrightarrow \left( {x - 2} \right)\left( {x + 2 + 3 - 2x} \right) = 0 \cr 
& \Leftrightarrow \left( {x - 2} \right)\left( { - x + 5} \right) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
x - 2 = 0 \hfill \cr 
- x + 5 = 0 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = 2 \hfill \cr 
x = 5 \hfill \cr} \right. \cr} \)

Vậy tập nghiệm của phương trình là \(S = \{2;5\}\)

LG c.

\({x^3} - 3{x^2} + 3x - 1 = 0\)

Phương pháp giải:

Áp dụng: 

- Các phương pháp nhóm, đặt nhân tử chung, hằng đẳng thức để biến đổi vế trái thành nhân tử.

- Phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

\(\eqalign{
& \,{x^3} - 3{x^2} + 3x - 1 = 0 \cr 
& \Leftrightarrow {x^3} - 3{x^2}.1 + 3x{.1^2} - {1^3} = 0 \cr 
& \Leftrightarrow {\left( {x - 1} \right)^3} = 0 \cr 
& \Leftrightarrow x - 1 = 0 \cr 
& \Leftrightarrow x = 1 \cr} \)

Vậy tập nghiệm của phương trình là \(S=\{ 1\}\)

LG d.

\(x(2x - 7) - 4x + 14 = 0\)

Phương pháp giải:

Áp dụng: 

- Các phương pháp nhóm, đặt nhân tử chung, hằng đẳng thức để biến đổi vế trái thành nhân tử.

- Phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

\(\eqalign{
& \,x\left( {2x - 7} \right) - 4x + 14 = 0 \cr 
& \Leftrightarrow x\left( {2x - 7} \right) - 2\left( {2x - 7} \right) = 0 \cr 
& \Leftrightarrow \left( {2x - 7} \right)\left( {x - 2} \right) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
2x - 7 = 0 \hfill \cr 
x - 2 = 0 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
2x = 7 \hfill \cr 
x = 2 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x =\dfrac{7}{2} \hfill \cr 
x = 2 \hfill \cr} \right. \cr} \)

Vậy tập nghiệm của phương trình là \(S = \left\{ {\dfrac{7}{2};2} \right\}\)

LG e.

\({\left( {2x - 5} \right)^2} - {\left( {x + 2} \right)^2} = 0\)

Phương pháp giải:

Áp dụng: 

- Các phương pháp nhóm, đặt nhân tử chung, hằng đẳng thức để biến đổi vế trái thành nhân tử.

- Phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

\(\eqalign{
& \,{\left( {2x - 5} \right)^2} - {\left( {x + 2} \right)^2} = 0 \cr 
& \Leftrightarrow \left[ {\left( {2x - 5} \right) + \left( {x + 2} \right)} \right]\left[ {\left( {2x - 5} \right) - \left( {x + 2} \right)} \right] = 0 \cr 
& \Leftrightarrow \left( {2x - 5 + x + 2} \right)\left( {2x - 5 - x - 2} \right) = 0 \cr 
& \Leftrightarrow \left( {3x - 3} \right)\left( {x - 7} \right) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
3x - 3 = 0 \hfill \cr 
x - 7 = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
3x = 3 \hfill \cr 
x = 7 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = 3:3 \hfill \cr 
x = 7 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr 
x = 7 \hfill \cr} \right. \cr} \)

Vậy tập nghiệm phương trình là: \(S= \{ 7; 1\}\)

LG f.

\({x^2} - x - \left( {3x - 3} \right) = 0\)

Phương pháp giải:

Áp dụng: 

- Các phương pháp nhóm, đặt nhân tử chung, hằng đẳng thức để biến đổi vế trái thành nhân tử.

- Phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

\(\eqalign{
& \,{x^2} - x - \left( {3x - 3} \right) = 0 \cr 
& \Leftrightarrow x\left( {x - 1} \right) - 3\left( {x - 1} \right) = 0 \cr 
& \Leftrightarrow \left( {x - 1} \right)\left( {x - 3} \right) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
x - 1 = 0 \hfill \cr 
x - 3 = 0 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr 
x = 3 \hfill \cr} \right. \cr} \)

Vậy tập nghiệm của phương trình là \(S = \{1;3\}\)

Loigiaihay.com


Bình chọn:
4.4 trên 331 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí