Bài 12 trang 104 SGK Toán 8 tập 2

Bình chọn:
4.1 trên 65 phiếu

Giải bài 12 trang 104 SGK Toán 8 tập 2. A, B, C và D là những đỉnh của hình hộp chữ nhật

Đề bài

 \(A,\, B,\, C \) và \(D\) là những đỉnh của hình hộp chữ nhật cho ở hình 88.

 

Hãy điền số thích hợp vào các ô trống ở bảng sau:

AB

6

13

14

 

BC

15

16

 

34

CD

42

 

70

62

DA

 

45

75

75

Kết quả bài 12 minh họa công thức quan trọng sau:

 \(DA = \sqrt{AB^{2}+BC^{2}+CD^{2}}\)

Phương pháp giải - Xem chi tiết

- Áp dụng định lý Py-ta-go trong tam giác vuông để chứng minh công thức: 

    \(DA = \sqrt{AB^{2}+BC^{2}+CD^{2}}\)

- Áp dụng công thức bên trên để tìm độ dài các đoạn thẳng chưa biết.

Lời giải chi tiết

Trước hết ta chứng minh hệ thức sau: \(DA = \sqrt{AB^{2}+BC^{2}+CD^{2}}\)

Ta có :  \( \triangle ABC\) vuông tại \( C \Rightarrow  BD^2  = DC^2 + BC^2\)

 \( \triangle ABD\) vuông tại \(B \Rightarrow  AD^2  = BD^2 + AB^2\)

\( \Rightarrow AD^2 = DC^2 +BC^2 + AB^2 \)

Áp dụng hệ thức này ta sẽ tính được độ dài  một cạnh khi biết  ba độ dài kia.

Do đó ta có kết quả như bảng dưới đây:

AB

6

13

14

25

BC

15

16

23

34

CD

42

40

70

62

DA

45

45

75

75

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

Các bài liên quan: - Bài 3. Thể tích của hình hộp chữ nhật

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu