 Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
                                                
                            Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
                         Bài 4. Liên hệ giữa phép chia và phép khai phương
                                                        Bài 4. Liên hệ giữa phép chia và phép khai phương
                                                    Trả lời câu hỏi 4 Bài 4 trang 18 SGK Toán 9 Tập 1 >
Rút gọn...
Đề bài
Rút gọn
a) \(\sqrt {\dfrac{{2{a^2}{b^4}}}{{50}}} \) b) \(\dfrac{{\sqrt {2a{b^2}} }}{{\sqrt {162} }}\) với \(a \ge 0.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng các công thức \(\sqrt {\dfrac{A}{B}} = \dfrac{{\sqrt A }}{{\sqrt B }}\,\left( {A \ge 0;B > 0} \right)\); \(\sqrt {AB} = \sqrt A .\sqrt B ;\,\sqrt {{A^2}} = \left| A \right|\); \(\sqrt {A^2}=|A|.\)
Lời giải chi tiết
a) Ta có \(\sqrt {\dfrac{{2{a^2}{b^4}}}{{50}}} = \sqrt {\dfrac{{{a^2}{b^4}}}{{25}}} = \dfrac{{\sqrt {{a^2}{b^4}} }}{{\sqrt {25} }} = \dfrac{{\sqrt {{a^2}} .\sqrt {{b^4}} }}{5}\)\(= \dfrac{{\sqrt {{a^2}} .\sqrt {{(b^2)^2}} }}{5} = \dfrac{{|a|{b^2}}}{5}\)
b) Ta có \(\dfrac{{\sqrt {2a{b^2}} }}{{\sqrt {162} }} = \sqrt {\dfrac{{2a{b^2}}}{{162}}} = \sqrt {\dfrac{{a{b^2}}}{{81}}} = \dfrac{{\sqrt {a{b^2}} }}{{\sqrt {81} }} \)\(= \dfrac{{\sqrt a .\sqrt {{b^2}} }}{9} = \dfrac{{\left| b \right|\sqrt a }}{9}\)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻCác bài khác cùng chuyên mục
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            