Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 1 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 1 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Rút gọn : \(A = \left( {2 + {{x - 2\sqrt x  + 1} \over {1 - \sqrt x }}} \right).\left( {2 + {{x + 2\sqrt x  + 1} \over {\sqrt x  + 1}}} \right)\)\(\,\,\,\,\left( {x \ge 0;x \ne 1} \right)\)

Bài 2. Chứng minh rằng : \({{\sqrt {ab}  - b} \over b} - \sqrt {{a \over b}}  < 0\,\,\,\,\left( {a \ge 0;b > 0} \right)\)

Bài 3. Tìm x, biết : \({{\sqrt {2x - 1} } \over {\sqrt {x - 1} }} = 2\)

LG bài 1

Phương pháp giải:

Quy đồng mẫu và rút gọn các phân thức.

Lời giải chi tiết:

Ta có: 

\( A = \left[ {2 + {{{{\left( {1 - \sqrt x } \right)}^2}} \over {1 - \sqrt x }}} \right]\left[ {2 + {{{{\left( {\sqrt x  + 1} \right)}^2}} \over {\sqrt x  + 1}}} \right] \)

\(  = \left( {2 + 1 - \sqrt x } \right)\left( {2 + \sqrt x  + 1} \right)  \)

\(= \left( {3 - \sqrt x } \right)\left( {3 + \sqrt x } \right) = 9 - x  \)

LG bài 2

Phương pháp giải:

Quy đồng mẫu và rút gọn các phân thức.

Lời giải chi tiết:

Biến đổi vế trái, ta có:

\(\eqalign{  & {{\sqrt {ab}  - b} \over b} - \sqrt {{a \over b}} \cr& = {{\sqrt b \left( {\sqrt a  - \sqrt b } \right)} \over b} - {{\sqrt a } \over {\sqrt b }}  \cr  &  = {{\sqrt a  - \sqrt b  - \sqrt a } \over {\sqrt b }} =  - 1 < 0 \cr} \)

LG bài 3

Phương pháp giải:

Sử dụng: \(\sqrt {\frac{A}{B}}  = \frac{{\sqrt A }}{{\sqrt B }}\) với \(A \ge 0;B > 0\)

Lời giải chi tiết:

Ta có: 

\({{\sqrt {2x - 1} } \over {\sqrt {x - 1} }} = 2 \Leftrightarrow \left\{ {\matrix{   {x \ge {1 \over 2}}  \cr   {x > 1}  \cr   {\sqrt {{{2x - 1} \over {x - 1}}}  = 2}  \cr  } } \right.\)

\(\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
x > 1\\
\frac{{2x - 1}}{{x - 1}} = 4
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x > 1\\
2x - 1 = 4x - 4
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x > 1\\
2x = 3
\end{array} \right.
\end{array}\)

\(\Leftrightarrow \left\{ {\matrix{   {x > 1}  \cr   {x = {3 \over 2}}  \cr  } } \right. \Leftrightarrow x = {3 \over 2}\)

Vậy \(x = \frac{3}{2}.\)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí