Lý thuyết Công thức nghiệm thu gọn

Bình chọn:
3.9 trên 16 phiếu

Đối với phương trình

A. Kiến thức cơ bản

1. công thức nghiệm thu gọn

Đối với phương trình \(a{x^2} + bx + c = 0(a \ne 0)\)và \(b = 2b'\), \(\Delta ' = b{'^2} - ac\)

- Nếu \(\Delta ' >0\)thì phương trình có hai nghiệm phân biệt:

\({x_1}\) = \(\frac{-b' + \sqrt{\bigtriangleup '}}{a}\); \({x_2}\)= \(\frac{-b' - \sqrt{\bigtriangleup '}}{a}\)

- Nếu \(\Delta ' =0\) thì phương trình có nghiệm kép

\({x_1}\) =\({x_2}\)= \(\frac{-b'}{a}\).

- Nếu \(\Delta ' <0\) thì phương trình vô nghiệm.

2. Chú ý:

- Khi \(a > 0\) và phương trình \(a{x^2} + bx + c = 0\) vô nghiệm thì biểu thức \(a{x^2} + bx + c > 0\) với mọi giá trị của \(x\).

- Nếu phương trình \(a{x^2} + bx + c = 0\) có \(a < 0\) thì nên đổi dấu hai vế của phương trình để có \(a > 0\), khi đó dể giải hơn.

- Đối với phương trình bậc hai khuyết \(a{x^2} + bx = 0\), \(a{x^2} + c = 0\) nên dùng phép giải trực tiếp sẽ nhanh hơn.

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan