Đề kiểm tra 15 phút - Đề số 4 - Bài 5 - Chương 4 - Đại số 9

Bình chọn:
4.9 trên 7 phiếu

Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 5 - Chương 4 - Đại số 9

Đề bài

Bài 1: Chứng minh rằng phương trình \({x^2} - 2mx - 1 = 0\) luôn luôn có nghiệm phân biệt.

Bài 2: Chứng tỏ rằng parabol (P): \(y = {1 \over 4}{x^2}\) và đường thẳng (d): \(y = x - 1\) luôn luôn tiếp xúc nhau.

Tìm tiếp điểm.

Bài 3: Tìm m để parabol (P) : \(y = m{x^2}\,\,\left( {m \ne 0} \right)\) và đường thẳng (d): \(y = 2x - 1\) tiếp xúc với nhau.

Lời giải chi tiết

Bài 1: Ta có : \(∆’ = m^2+ 1 > 0\), với mọi \(m\) vì \(m^2≥ 0\) với mọi \(m\). Vậy phương trình đã cho luôn có hai nghiệm phân biệt.

Bài 2:  Xét phương trình hoành độ điểm chung ( nếu có) của (P) và (d) :

\({1 \over 4}{x^2} = x - 1 \Leftrightarrow {x^2} - 4x + 4 = 0\)

Phương trình có nghiệm kép \(x = 2.\)

Vậy (P) và (d) tiếp xúc nhau tại  điểm \(( 2; 1).\)

Bài 3: Xét phương trình hoành độ giao điểm ( nếu có) của (P) và (d) :

\(m{x^2} = 2x - 1\,\,\,\left( {m \ne 0} \right)\)

\(\Leftrightarrow m{x^2} - 2x + 1 = 0\,\,\,\,\,\,\left( {m \ne 0} \right)\,\,\,\,\,\left( * \right)\)

(P) và (d) tiếp xúc nhau khi và chỉ khi phương trình (*) có nghiệm kép

\( \Leftrightarrow \left\{ \matrix{  m \ne 0 \hfill \cr  \Delta ' = 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  m \ne 0 \hfill \cr  1 - m = 0 \hfill \cr}  \right.\)\(\; \Leftrightarrow m = 1.\)

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

Các bài liên quan: - Bài 5. Công thức nghiệm thu gọn

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Góp ý Loigiaihay.com, nhận quà liền tay