Bài 20 trang 49 SGK Toán 9 tập 2

Bình chọn:
3.8 trên 56 phiếu

Giải bài 20 trang 49 SGK Toán 9 tập 2. Giải các phương trình

Đề bài

Giải các phương trình:

a) \(25{x^2}-{\rm{ }}16{\rm{ }} = {\rm{ }}0\) ;               b) \(2{x^2} + {\rm{ }}3{\rm{ }} = {\rm{ }}0\)

c) \(4,2{x^2} + {\rm{ }}5,46x{\rm{ }} = {\rm{ }}0\);        d) \(4{x^2} - {\rm{ }}2\sqrt 3 x{\rm{ }} = {\rm{ }}1{\rm{ }} - {\rm{ }}\sqrt 3 \).

Phương pháp giải - Xem chi tiết

a) Với mọi \(x \ge 0\), ta có: \(x^2 = a \Leftrightarrow x= \pm \sqrt a\).

b) Với mọi \(x\) luôn có \(x^2 \ge 0 \).

c) Đưa về phương trình tích: \(a.b =0 \Leftrightarrow a =0\) hoặc \(b=0\).

d) Sử dụng công thức nghiệm thu gọn

Lời giải chi tiết

a) Ta có:

\(25{x^2}{\rm{  - }}16 = 0 \Leftrightarrow 25{x^2} = 16 \Leftrightarrow {x^2} = {\rm{ }} \dfrac{16}{25}\)

\(⇔ x = ±\)\(\sqrt{\dfrac{16}{25}}\) = ±\(\dfrac{4}{5}\)

b) \(2{x^2} + {\rm{ }}3{\rm{ }} = {\rm{ }}0\). 

Ta có: \(x^2 \ge 0\) với mọi \(x\) suy ra \(VT=2x^2+3 \ge 3> 0 \) với mọi \(x\).

Mà \(VP=0\). Do đó phương trình đã cho vô nghiệm.

c) Ta có:

\(4,2{x^2} + {\rm{ }}5,46x{\rm{ }} = {\rm{ }}0{\rm{ }} \Leftrightarrow {\rm{ }}2x\left( {2,1x{\rm{ }} + {\rm{ }}2,73} \right){\rm{ }} = {\rm{ }}0\)

\( \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
2,1x + 2,73 = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = - 1,3 \hfill \cr} \right.\)

Vậy phương trình có hai nghiệm \(x=0;x=-1,3\)

d) Ta có:

\(4{x^2} - {\rm{ }}2\sqrt 3 x{\rm{ }} = {\rm{ }}1{\rm{ }} - {\rm{ }}\sqrt 3 \)

\(\Leftrightarrow {\rm{ }}4{x^2} - {\rm{ }}2\sqrt 3 x{\rm{ }}-{\rm{ }}1{\rm{ }} + {\rm{ }}\sqrt 3 {\rm{ }} = {\rm{ }}0\)

Có \(a = 4,\  b’ = -\sqrt{3},\ c = -1 + \sqrt{3}\)

Suy ra \(\Delta' {\rm{ }} = {\rm{ }}{\left( { - \sqrt 3 } \right)^2}-{\rm{ }}4{\rm{ }}.{\rm{ }}\left( { - 1{\rm{ }} + {\rm{ }}\sqrt 3 } \right){\rm{ }}\)

\(= {\rm{ }}3{\rm{ }} + {\rm{ }}4{\rm{ }} - {\rm{ }}4\sqrt 3 {\rm{ }} = {\rm{ }}{\left( {2{\rm{ }} - {\rm{ }}\sqrt 3 } \right)^2} > 0\)

\( \Rightarrow \sqrt {\Delta '} {\rm{ }} = {\rm{ }}2{\rm{ }} - {\rm{ }}\sqrt 3 \)

Do đó phương trình có hai  nghiệm phân biệt:

\({x_1}\) = \(\dfrac{\sqrt{3} - 2+ \sqrt{3}}{4}\) = \(\dfrac{\sqrt{3} - 1}{2}\) ,

\({x_2}\) = \(\dfrac{\sqrt{3} +2 - \sqrt{3}}{4}\) = \(\dfrac{1}{2}\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

Các bài liên quan: - Bài 5. Công thức nghiệm thu gọn

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com