Bài 122 trang 21 SBT toán 6 tập 1


Đề bài

Chứng tỏ rằng lấy một số có hai chữ số , cộng với số gồm hai chữ số ấy viết theo thứ tự ngược lại, ta luôn luôn được một số chia hết cho \(11\) (chẳng hạn \(37+37 = 110,\) chia hết cho \(11\))

Phương pháp giải - Xem chi tiết

+) Sử dụng cách tách số tự nhiên thành từng lớp.

+) Áp dụng tính chất: Nếu trong một tích các số tự nhiên có một thừa số chia hết cho một số nào đó thì tích cũng chia hết cho số đó. 


Lời giải chi tiết

Gọi số tự nhiên có hai chữ số là \(\overline {ab} \)  \((a \ne 0)\)

Số viết theo thứ tự ngược lại của   \(\overline {ab} \) là  \(\overline {ba} \)

Ta có \(\overline {ab}=10a+b \) và \(\overline {ba}=10b+a \)

Suy ra \(\overline {ab} \) + \(\overline {ba} \)\( = (10a+b)+(10b+a)\)\(=11a+11b=11.(a+b)\)

Vì  \(11.(a+b) \,\,⋮\, 11\) nên \(\overline {ab} \) + \(\overline {ba} \,\) luôn chia hết cho \(11.\) 

Loigiaihay.com


Bình chọn:
4.4 trên 10 phiếu

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả.