Bài 119 trang 21 SBT toán lớp 6 tập 1>
Giải bài 119 trang 21 sách bài tập toán lớp 6. Chứng tỏ rằng: a) Tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3...
Chứng tỏ rằng:
LG a
Tổng của ba số tự nhiên liên tiếp là một số chia hết cho \(3.\)
Phương pháp giải:
+) Hai số tự nhiên liên tiếp hơn kém nhau một đơn vị.
Áp dụng tính chất \(1\), tính chất \(2\) về sự chia hết của một tổng.
+) Tính chất \(1\): Nếu tất cả các số hạng của tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó.\(a\, \vdots\,m, b \,\vdots \,m , c \,\vdots\, m \Rightarrow (a+b+c) \,\vdots \,m\)
+) Tính chất \(2\): Nếu chỉ có một số hạng của tổng không chia hết cho một số, còn các số hạng khác đều chia hết cho số đó thì tổng không chia hết cho số đó.\(a\, \not{\vdots}\,\, m, b \not{\vdots}\,\, m , c \not{\vdots }\,\,m \Rightarrow (a+b+c) \not{\vdots}\,\, m\)
Lời giải chi tiết:
Gọi ba số tự nhiên liên tiếp là \(a, a + 1, a + 2\) ( \(a\in \mathbb N\) )
Ta có \(a + ( a + 1) + ( a + 2)\)\(\, = (a + a + a) + (1 + 2) = 3a+3\)
Vì \(3\; ⋮\; 3\) và \(3a \;⋮\; 3\) suy ra \((3a+3) \;⋮ \;3\)
Vậy tổng của ba số tự nhiên liên tiếp là một số chia hết cho \(3\)
LG b
Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho \(4.\)
Phương pháp giải:
+) Hai số tự nhiên liên tiếp hơn kém nhau một đơn vị.
Áp dụng tính chất \(1\), tính chất \(2\) về sự chia hết của một tổng.
+) Tính chất \(1\): Nếu tất cả các số hạng của tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó.\(a\, \vdots\,m, b \,\vdots \,m , c \,\vdots\, m \Rightarrow (a+b+c) \,\vdots \,m\)
+) Tính chất \(2\): Nếu chỉ có một số hạng của tổng không chia hết cho một số, còn các số hạng khác đều chia hết cho số đó thì tổng không chia hết cho số đó.\(a\, \not{\vdots}\,\, m, b \not{\vdots}\,\, m , c \not{\vdots }\,\,m \Rightarrow (a+b+c) \not{\vdots}\,\, m\)
Lời giải chi tiết:
Gọi bốn số tự nhiên liên tiếp là \(a, a + 1, a + 2, a + 4\) ( \(a\in \mathbb N\) )
Ta có
\(a + ( a + 1) + ( a + 2) + ( a + 3 )\)
\(= (a + a + a + a) + (1 + 2 + 3) \)
\(= 4a + 6\)
Vì \(4\; ⋮\; 4\) nên \(4a \;⋮\; 4\) nhưng \(6\) không chia hết cho \(4\),
Suy ra \(( 4a + 6 )\) không chia hết cho \(4\)
Vậy tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho \(4.\)
Loigiaihay.com
- Bài 120 trang 21 SBT toán 6 tập 1
- Bài 121 trang 21 SBT toán 6 tập 1
- Bài 122 trang 21 SBT toán 6 tập 1
- Bài 10.1 phần bài tập bổ sung trang 21 SBT toán 6 tập 1
- Bài 10.2 phần bài tập bổ sung trang 21 SBT toán 6 tập 1
>> Xem thêm