Bài 121 trang 21 SBT toán 6 tập 1


Giải bài 121 trang 21 sách bài tập toán 6. Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11 (chẳng hạn 328328 ⋮ 11)

Đề bài

Chứng tỏ rằng số có dạng \(\overline {abcabc} \) bao giờ cũng chia hết cho \(11\) (chẳng hạn \(328328 \,\,⋮\,\, 11\)) 

Phương pháp giải - Xem chi tiết

Áp dụng tính chất: Nếu trong một tích các số tự nhiên có một thừa số chia hết cho một số nào đó thì tích cũng chia hết cho số đó. 

Lời giải chi tiết

Ta có : \(\overline {abcabc} =\overline {abc}.1000+\overline {abc}\)\(=\overline {abc}.(1000+1)\)\(=1001.\overline {abc}\)         

Từ đó \(\overline {abcabc}  = 1001.\overline {abc}  = 7.11.13.\overline {abc} \)

Vì  \(11 \,\,⋮\,\, 11\) nên \(7.11.13.\overline {abc} \) \( \,\,⋮\,\, 11\) hay \(1001.\) \(\overline {abc} \) \(\,\,⋮\, 11\)

Do đó \(\overline {abcabc} \,\,⋮\,\, 11\)

Vậy số có dạng \(\overline {abcabc} \) bao giờ cũng chia hết cho \(11.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 12 phiếu

>> Học trực tuyến lớp 6 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh, Địa cùng các thầy cô nổi tiếng, dạy hay dễ hiểu


Gửi bài