Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 3 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 3 - Đại số 9

Đề bài

Bài 1: Giải hệ phương trình : \(\left\{ \matrix{  \left( {1 + \sqrt 2 } \right)x + \left( {1 - \sqrt 2 } \right)y = 5 \hfill \cr  \left( {1 + \sqrt 2 } \right)x + \left( {1 + \sqrt 2 } \right)y = 3. \hfill \cr}  \right.\)

Bài 2: Tìm giá trịcủa  m để đường thẳng \(y = mx + 2\) đi qua giao điểm của hai đường thẳng (d1): \(2x +3y = 7\) và (d2) : \(3x + 2y = 13.\)

Lời giải chi tiết

Bài 1: Ta có  : \(\left\{ \matrix{  \left( {1 + \sqrt 2 } \right)x + \left( {1 - \sqrt 2 } \right)y = 5 \hfill \cr  \left( {1 + \sqrt 2 } \right)x + \left( {1 + \sqrt 2 } \right)y = 3 \hfill \cr}  \right.\)

\(\Leftrightarrow \left\{ \matrix{  2\sqrt {2y}  =  - 2 \hfill \cr  \left( {1 + \sqrt 2 } \right)x + \left( {1 - \sqrt 2 } \right)y = 5 \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{  y =  - {1 \over {\sqrt 2 }} \hfill \cr  x = {{7\sqrt 2  - 6} \over 2}. \hfill \cr}  \right.\)

Bài 2: Tọa độ giao điểm của (d1) và (d2) thỏa mãn hệ :

\(\left\{ \matrix{  2x + 3y = 7 \hfill \cr  3x + 2y = 13 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  4x + 6y = 14 \hfill \cr  9x + 6y = 39 \hfill \cr}  \right. \)

\(\Leftrightarrow \left\{ \matrix{  5x = 25 \hfill \cr  2x + 3y = 7 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x = 5 \hfill \cr  y =  - 1. \hfill \cr}  \right.\)

Thế \(x = 5; y = − 1\) vào phương trình \(y = mx + 2\), ta được :

\( - 1 = 5m + 2 \Leftrightarrow m =  - {3 \over 5}.\)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com