Bài 25 trang 19 SGK Toán 9 tập 2

Bình chọn:
4.1 trên 34 phiếu

Giải bài 25 trang 19 SGK Toán 9 tập 2. Ta biết rằng: Một đa thức bằng đa thức 0 khi và chỉ khi tất cả các hệ số của nó bằng 0.

Đề bài

Ta biết rằng: Một đa thức bằng đa thức \(0\) khi và chỉ khi tất cả các hệ số của nó bằng \(0\). Hãy tìm các giá trị của \(m\) và \(n\) để đa thức sau (với biến số \(x\)) bằng đa thức \(0\):

\(P(x) = (3m - 5n + 1)x + (4m - n -10)\).

Phương pháp giải - Xem chi tiết

+) Đa thức \(P(x)=ax+b =0 (đa\ thức\ 0) \Leftrightarrow \left\{ \begin{matrix} a=0 & & \\ b = 0 & & \end{matrix}\right.\).

+) Giải hệ phương trình trên ta được giá trị cần tìm.

Lời giải chi tiết

Ta có

\(P(x) = (3m - 5n + 1)x + (4m - n -10)\) có hai hệ số là \(a=(3m - 5n + 1)  \) và \(b=(4m - n -10)\).

Do đó \(P(x) = 0 \Leftrightarrow \left\{\begin{matrix} 3m - 5n +1 = 0 & & \\ 4m - n -10=0& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 3m - 5n = -1 & & \\ 4m - n =10& & \end{matrix}\right.  \Leftrightarrow \left\{\begin{matrix} 3m - 5n = -1 & & \\ 20m - 5n =50& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -17m = -51 & & \\ 4m - n =10& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} m = 3 & & \\ -n = 10 - 4.3& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m = 3 & & \\ n = 2& & \end{matrix}\right.\)

Vậy \(m=3,\ n=2\) thì đa thức \(P(x) =0\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com