Bài 20 trang 19 SGK Toán 9 tập 2

Bình chọn:
4.2 trên 165 phiếu

Giải bài 20 trang 19 SGK Toán 9 tập 2. Giải các hệ phương trình sau bằng phương pháp cộng đại số.

Đề bài

Giải các hệ phương trình sau bằng phương pháp cộng đại số.

a) \(\left\{\begin{matrix} 3x + y =3 & & \\ 2x - y = 7 & & \end{matrix}\right.\);        b) \(\left\{\begin{matrix} 2x + 5y =8 & & \\ 2x - 3y = 0& & \end{matrix}\right.\);        

c) \(\left\{\begin{matrix} 4x + 3y =6 & & \\ 2x + y = 4& & \end{matrix}\right.\);       d) \(\left\{\begin{matrix} 2x + 3y =-2 & & \\ 3x -2y = -3& & \end{matrix}\right.\);                     

e) \(\left\{\begin{matrix} 0,3x + 0,5y =3 & & \\ 1,5x -2y = 1,5& & \end{matrix}\right.\)

Phương pháp giải - Xem chi tiết

+) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của cùng một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.

+) Áp dụng quy tắc cộng đại số để được hệ phương trình mới trong đó có một phương trình một ẩn.

+) Giải phương trình một ẩn, tìm được nghiệm thay vào phương trình còn lại ta được nghiệm của hệ đã cho. 

Lời giải chi tiết

a) Cộng vế với vế của hai phương trình trong hệ, ta được

 \(\left\{\begin{matrix} 3x + y =3 & & \\ 2x - y = 7 & & \end{matrix}\right. \\\Leftrightarrow \left\{\begin{matrix} 3x+y+2x-y =3+7 & & \\ 2x -y = 7& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} 5x =10 & & \\ 2x -y = 7& & \end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{\begin{matrix} x =2 & & \\ y = 2x-7& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x =2 & & \\ 2.2 -y = 7& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} x =2 & & \\ y = -3& & \end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là \((2; -3)\).

 b) Trừ vế với vế của hai phương trình trong hệ, ta được:

 \(\left\{\begin{matrix} 2x + 5y =8 & & \\ 2x - 3y = 0& & \end{matrix}\right. \\\Leftrightarrow \left\{\begin{matrix} 2x+5y =8 & & \\ 2x +5y-(2x-3y) = 8-0& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} 2x + 5y =8 & & \\ 8y = 8& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2x + 5y =8 & & \\ y = 1& & \end{matrix}\right. \\\Leftrightarrow \left\{\begin{matrix} 2x+5.1 =8  \\ y = 1& & \end{matrix}\right.\\ \Leftrightarrow \left\{\begin{matrix} x =\dfrac{3}{2} & & \\ y = 1& & \end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là \({\left(\dfrac{3}{2}; 1\right)}\).

  c) Nhân hai vế của phương trình thứ hai với \(2\), rồi trừ vế với vế của hai phương trình trong hệ, ta được:

\(\left\{\begin{matrix} 4x + 3y =6 & & \\ 2x + y = 4& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 4x + 3y =6 & & \\ 4x + 2y =8& & \end{matrix}\right.\) 

\(\Leftrightarrow \left\{\begin{matrix} 4x+3y =6 & & \\ 4x +3y-(4x+2y) = 6-8& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} 4x + 3y =6 & & \\ y = -2& & \end{matrix}\right. \\\Leftrightarrow \left\{\begin{matrix} 4x+3.(-2) =6 & & \\ y = -2& & \end{matrix}\right.\\ \Leftrightarrow \left\{\begin{matrix} 4x =12 & & \\ y = -2& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} x =3 & & \\ y = -2& & \end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là \((3; -2)\).

d) Nhân hai vế của phương trình thứ nhất với \(3\), nhân hai vế của phương trình thứ hai với \(2\), rồi trừ vế với vế của hai phương trình trong hệ, ta được

\(\left\{\begin{matrix} 2x + 3y =-2 & & \\ 3x -2y = -3& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 6x + 9y = -6 & & \\ 6x - 4y = -6& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 6x+9y =-6 & & \\ 6x +9y-(6x-4y) = -6-(-6)& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} 6x + 9y = -6 & & \\ 13y = 0& & \end{matrix}\right. \Leftrightarrow\) \(\left\{\begin{matrix} x = -1 & & \\ y = 0 & & \end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là \((-1; 0)\).

e) Nhân hai vế của phương trình thứ nhất với \(5\) rồi trừ vế với vế của hai phương trình trong hệ, ta được:

\(\left\{\begin{matrix} 0,3x + 0,5y =3 & & \\ 1,5x -2y = 1,5& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 1,5x + 2,5y=15 & & \\ 1,5x - 2y = 1,5 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 1,5x+2,5y =15 & & \\ 1,5x +2,5y-(1,5x-2y) = 15-1,5& & \end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix} 1,5x + 2,5y=15 & & \\ 4,5y = 13,5 & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} 1,5x =15 -2, 5 . 3& & \\ y = 3 & & \end{matrix}\right.\) 

\(\Leftrightarrow \left\{\begin{matrix} 1,5x =7,5& & \\ y = 3 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x =5& & \\ y = 3 & & \end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là \((5; 3)\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com