Bài 21 trang 19 SGK Toán 9 tập 2

Bình chọn:
4.3 trên 97 phiếu

Giải bài 21 trang 19 SGK Toán 9 tập 2. Giải các hệ phương trình sau bằng phương pháp cộng đại số.

Đề bài

Giải các hệ phương trình sau bằng phương pháp cộng đại số.

a) \(\left\{\begin{matrix} x\sqrt{2} - 3y = 1 & & \\ 2x + y\sqrt{2}=-2 & & \end{matrix}\right.\);           

b) \(\left\{\begin{matrix} 5x\sqrt{3}+ y = 2\sqrt{2}& & \\ x\sqrt{6} - y \sqrt{2} = 2& & \end{matrix}\right.\) 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Hệ a) ta nhân phương trình thứ nhất với \(-\sqrt 2\), rồi cộng từng vế hai phương trình.

Hệ b) ta nhân phương trình thứ nhất với \(\sqrt 2\), rồi cộng từng vế hai phương trình.

Lời giải chi tiết

a) Nhân cả hai vế của phương trình thứ nhất với \(-\sqrt 2\), rồi cộng từng vế hai phương trình, ta được:

\(\left\{\begin{matrix} x\sqrt{2} - 3y = 1 & & \\ 2x + y\sqrt{2}=-2 & & \end{matrix}\right.\) 

\(\Leftrightarrow \left\{\begin{matrix} -2x + 3\sqrt{2}.y = -\sqrt{2}& & \\ 2x + \sqrt{2}y = -2 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -2x + 3\sqrt{2}.y+2x+ \sqrt{2}.y = -\sqrt{2}-2& & \\ 2x + \sqrt{2}y = -2 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 4\sqrt{2}.y = -\sqrt{2} - 2& & \\ 2x + y\sqrt{2} = -2& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-\sqrt{2} - 2}{4\sqrt 2}& & \\ 2x + y\sqrt{2} = -2 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-1-\sqrt{2}}{4}& & \\ 2x = -y\sqrt{2} -2 & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-1-\sqrt{2}}{4}& & \\ 2x =- \dfrac{-1-\sqrt{2}}{4}.\sqrt{2}  -2 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-1-\sqrt{2}}{4}& & \\ 2x =\dfrac{\sqrt 2 -6}{4}& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x = -\dfrac{3}{4} + \dfrac{\sqrt{2}}{8}& & \\ y = -\dfrac{1}{4} - \dfrac{\sqrt{2}}{4}& & \end{matrix}\right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất là: \({\left( -\dfrac{3}{4} + \dfrac{\sqrt{2}}{8}; -\dfrac{1}{4} - \dfrac{\sqrt{2}}{4}  \right)}\)

b) Nhân hai vế của phương trình thứ nhất với \(\sqrt{2}\), rồi cộng từng vế hai phương trình.

Ta có \(\left\{\begin{matrix} 5x\sqrt{3}+ y = 2\sqrt{2}& & \\ x\sqrt{6} - y \sqrt{2} = 2& & \end{matrix}\right.\)

Suy ra

\(\left\{\begin{matrix} 5\sqrt 6 x + y \sqrt 2 = 4 & & \\ x \sqrt 6 - y \sqrt 2=2 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 6 \sqrt 6 x=6 & & \\ x \sqrt 6 -y \sqrt 2 =2 & & \end{matrix}\right.\)

\(\Leftrightarrow  \left\{\begin{matrix}  x= \dfrac{\sqrt 6}{6} & &\\  y \sqrt 2 = x \sqrt 6 -2& & \end{matrix} \right. \)

\(\Leftrightarrow  \left\{\begin{matrix}  x= \dfrac{\sqrt 6}{6} & &\\  y \sqrt 2 = \dfrac{\sqrt 6}{6}. \sqrt 6 -2& & \end{matrix} \right.\)

\( \Leftrightarrow  \left\{\begin{matrix}  x= \dfrac{\sqrt 6}{6} & &\\  y  =- \dfrac{\sqrt 2}{2}& & \end{matrix} \right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \( {\left(\dfrac{\sqrt 6}{6}; -\dfrac{\sqrt 2}{2} \right)}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Góp ý Loigiaihay.com, nhận quà liền tay