Bài 21 trang 19 SGK Toán 9 tập 2

Bình chọn:
4.5 trên 72 phiếu

Giải bài 21 trang 19 SGK Toán 9 tập 2. Giải các hệ phương trình sau bằng phương pháp cộng đại số.

Đề bài

Giải các hệ phương trình sau bằng phương pháp cộng đại số.

a) \(\left\{\begin{matrix} x\sqrt{2} - 3y = 1 & & \\ 2x + y\sqrt{2}=-2 & & \end{matrix}\right.\);           

b) \(\left\{\begin{matrix} 5x\sqrt{3}+ y = 2\sqrt{2}& & \\ x\sqrt{6} - y \sqrt{2} = 2& & \end{matrix}\right.\)

Phương pháp giải - Xem chi tiết

+) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của cùng một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.

+) Áp dụng quy tắc cộng đại số để được hệ phương trình mới trong đó có một phương trình một ẩn.

+) Giải phương trình một ẩn, tìm được nghiệm thay vào phương trình còn lại ta được nghiệm của hệ đã cho. 

Lời giải chi tiết

a) Nhân cả hai vế của phương trình thứ nhất với \(-\sqrt 2\), rồi cộng từng vế hai phương trình, ta được:

\(\left\{\begin{matrix} x\sqrt{2} - 3y = 1 & & \\ 2x + y\sqrt{2}=-2 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -2x + 3\sqrt{2}.y = -\sqrt{2}& & \\ 2x + \sqrt{2}y = -2 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 4\sqrt{2}.y = -\sqrt{2} - 2& & \\ 2x + y\sqrt{2} = -2& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-\sqrt{2} - 2}{4\sqrt 2}& & \\ 2x + y\sqrt{2} = -2 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-1-\sqrt{2}}{4}& & \\ 2x = -y\sqrt{2} -2 & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-1-\sqrt{2}}{4}& & \\ 2x =- \dfrac{-1-\sqrt{2}}{4}.\sqrt{2}  -2 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{-1-\sqrt{2}}{4}& & \\ 2x =\dfrac{\sqrt 2 -6}{4}& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x = -\dfrac{3}{4} + \dfrac{\sqrt{2}}{8}& & \\ y = -\dfrac{1}{4} - \dfrac{\sqrt{2}}{4}& & \end{matrix}\right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất là: \({\left( -\dfrac{3}{4} + \dfrac{\sqrt{2}}{8}; -\dfrac{1}{4} - \dfrac{\sqrt{2}}{4}  \right)}\)

b) Nhân hai vế của phương trình thứ nhất với \(\sqrt{2}\), rồi cộng từng vế hai phương trình, ta được:

\(\left\{\begin{matrix} 5\sqrt 6 x + y \sqrt 2 = 4 & & \\ x \sqrt 6 - y \sqrt 2=2 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 6 \sqrt 6 x=6 & & \\ x \sqrt 6 -y \sqrt 2 =2 & & \end{matrix}\right.\)

\(\Leftrightarrow  \left\{\begin{matrix}  x= \dfrac{\sqrt 6}{6} & &\\  y \sqrt 2 = x \sqrt 6 -2& & \end{matrix} \right. \)

\(\Leftrightarrow  \left\{\begin{matrix}  x= \dfrac{\sqrt 6}{6} & &\\  y \sqrt 2 = \dfrac{\sqrt 6}{6}. \sqrt 6 -2& & \end{matrix} \right.\)

\( \Leftrightarrow  \left\{\begin{matrix}  x= \dfrac{\sqrt 6}{6} & &\\  y  = \dfrac{\sqrt 2}{2}& & \end{matrix} \right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \( {\left(\dfrac{\sqrt 6}{6}; \dfrac{\sqrt 2}{2} \right)}\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan