Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 1 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 1 - Hình học 9

Đề bài

Bài 1. Tính \(A = {{{{\sin }^2}\alpha  - {{\cos }^2}\alpha } \over {\sin \alpha .\cos \alpha }}\) biết \(\tan \alpha  = \sqrt 3 .\)

Bài 2. Cho ∆ABC cân tại A, đường cao \(BK = h\) và \(\widehat {ABC} = \alpha .\) Tính các cạnh của tam giác theo h và \(α\).

Lời giải chi tiết

Bài 1. Chia cả tử và mẫu của biểu thức A cho \({\cos ^2}\alpha ,\) ta có: \(A = {{{{\tan }^2}\alpha  - 1} \over {\tan \alpha }}\)

Thay \(\tan \alpha  = \sqrt 3 ,\) ta có: \(A = {{{{\left( {\sqrt 3 } \right)}^2} - 1} \over {\sqrt 3 }} = {{3 - 1} \over {\sqrt 3 }} = {2 \over {\sqrt 3 }} = {{2\sqrt 3 } \over 3}\)

Bài 2.

∆ABC cân tại A nên \(\widehat {ACB} = \widehat {ABC} = \alpha \)

Lại có ∆BKC vuông tại K có \(\widehat C = \alpha ,\) ta có:

\(BK = BC.\sin \alpha  \Rightarrow BC = {{BK} \over {\sin \alpha }} = {h \over {\sin \alpha }}\)

Kẻ đường cao AH, ta có: ∆ABC cân tại A nên AH đồng thời là trung tuyến

hay \(BH = CH = {{BC} \over 2} = {h \over {2\sin \alpha }}\)

Xét tam giác vuông AHB có: \(BH = AB.\cos B = AB.\cos α\)

\( \Rightarrow AB = {{BH} \over {\cos \alpha }} \)\(\;= {h \over {2\sin \alpha }}:\cos \alpha  = {h \over {2\sin \alpha \cos \alpha }}\)

Do đó: \(AC = AB = {h \over {2\sin \alpha .\cos \alpha }}\)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài