Đề kiểm tra 15 phút - Đề số 2 - Bài 2 - Chương 3 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 2 - Chương 3 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1: Tìm m để hệ phương trình sau vô nghiệm :

\(\left\{ \begin{array}{l}
4x - y = 3\\
mx + 3y = 5
\end{array} \right.\)

Bài 2: Tìm m và n để hệ phương trình :

\(\left\{ \begin{array}{l}
mx - y = 5\\
nx + my = 4
\end{array} \right.\)

có một nghiệm là ( 2; − 1).

Bài 3: Hai hệ phương trình sau có tương đương không ?

(A)\(\left\{ \matrix{  x - y = 1 \hfill \cr  2x - 2y = 2 \hfill \cr}  \right.\)  và (B) \(\left\{ \matrix{  2x - y = 1 \hfill \cr  4x - 2y = 2. \hfill \cr}  \right.\)

LG bài 1

Phương pháp giải:

Điều kiện để hai đường thẳng song song là: \(a = a',b \ne b'\)

Lời giải chi tiết:

Bài 1: Viết lại hệ  \(\left\{ \matrix{  y = 4x - 3\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{d_1}} \right) \hfill \cr  y =  - {m \over 3}x + {5 \over 3}\,\,\,\,\,\,\,\left( {{d_2}} \right) \hfill \cr}  \right.\)

Hệ vô nghiệm khi và chỉ khi hai đường thẳng ( d1) và (d2) song song:

\(\left\{ \matrix{   - {m \over 3} = 4 \hfill \cr   - 3 \ne {5 \over 3} \hfill \cr}  \right. \Leftrightarrow m =  - 12.\)

LG bài 2

Phương pháp giải:

Thay x,y vào hệ giải ra ta tìm được m,n

Lời giải chi tiết:

Bài 2: Thế \(x = 2\) và \(y = − 1\) vào hệ đã cho, ta được : \(\left\{ \matrix{  2m + 1 = 5 \hfill \cr  2n - m = 4 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  m = 2 \hfill \cr  n = 3. \hfill \cr}  \right.\)

LG bài 3

Phương pháp giải:

C1:Ta tìm công thức nghiệm tỏng quát của hai phương trình và nhận thấy 2 giá trị của y khác nhau

C2: Lấy 1 cặp x,y thuộc hệ A và chỉ ra nó không thuộc B

Lời giải chi tiết:

Bài 3: Xét hệ (A). Hệ có vô số nghiệm.

Công thức nghiệm tổng quát  \((x;2x-1)\)

Xét hệ (B). Hệ có vô số nghiệm.

Công thức nghiệm tổng quát : \((x; x-1)\)

Dễ thấy hai đường thẳng \(y = x – 1\) và \(y = 2x – 1\) không trùng nhau. Vậy tập nghiệm của hai hệ khác nhau nên hai hệ không tương đương ( có thể chỉ ra môt nghiệm \(( 2; 1)\) thỏa (A) mà không thỏa (B)).

Chú ý: Hai hệ cùng vô nghiệm thì tương đương với nhau.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài