Bài 9 trang 12 SGK Toán 9 tập 2

Bình chọn:
3.9 trên 16 phiếu

Giải bài 9 trang 12 SGK Toán 9 tập 2. Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:

Đề bài

Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:

a) \(\left\{\begin{matrix} x + y = 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right.\);                 

b) \(\left\{\begin{matrix} 3x -2 y = 1 & & \\ -6x + 4y = 0 & & \end{matrix}\right.\)

Phương pháp giải - Xem chi tiết

Đưa các phương trình đã cho về dạng \(y=ax+b\ (d)\) và \(y=a'x+b' \ (d')\) để so sánh các hệ số \(a,\ b\) và \(a',\ b'\). Nếu \(a=a',\ b \ne b'\) thì \(d\) song song với \(d' \Rightarrow \)  hệ vô nghiệm.

Lời giải chi tiết

a) Ta có:

\(\left\{\begin{matrix} x + y = 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} y = -x + 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} y = -x + 2 & & \\ y = -x + \frac{2}{3} & & \end{matrix}\right.\)

Suy ra \(a = -1,\ a' = -1\);  \(b = 2,\ b' = \dfrac{2}{3}\) nên \(a = a', b ≠ b'.\)

Do đó hai đường thẳng song song nhau nên hệ đã cho vô nghiệm.

b) Ta có:

\(\left\{\begin{matrix} 3x -2 y = 1 & & \\ -6x + 4y = 0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2y = 3x - 1 & & \\ 4y = 6x& & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{3}{2}x - \dfrac{1}{2} & & \\ y = \dfrac{3}{2}x& & \end{matrix}\right.\)

Ta có: \(a = \dfrac{3}{2}, a' = \dfrac{3}{2}\), \(b = -\dfrac{1}{2}, b' = 0\) nên \(a = a', b ≠b'\).

Do đó hai đường thẳng song song với nhau nên hệ đã cho vô nghiệm. 

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan