Bài 8 trang 12 SGK Toán 9 tập 2

Bình chọn:
4.5 trên 32 phiếu

Giải bài 8 trang 12 SGK Toán 9 tập 2. Cho các hệ phương trình sau:

Đề bài

Cho các hệ phương trình sau:

\(a)\left\{ \matrix{
x = 2 \hfill \cr 
2x - y = 3 \hfill \cr} \right.\)

\(b)\left\{ \matrix{
x + 3y = 2 \hfill \cr 
2y = 4 \hfill \cr} \right.\)

Trước hết, hãy đoán nhận số nghiệm của mỗi hệ phương trình trên (giải thích rõ lí do). Sau đó, tìm tập nghiệm của các hệ đã cho bằng cách vẽ hình.

Phương pháp giải - Xem chi tiết

+) Từ phương trình \(ax+by=c\)  \((\) với \(b \ne 0)\) rút biến \(y\) theo biến \(x\), ta được: \(y=-\dfrac{a}{b}x+\dfrac{c}{b}\).

+) Vẽ các đường thẳng biểu diễn tập nghiệm của hai phương trình trên cùng một hệ trục tọa độ.

+) Xác định tọa độ giao điểm. Thay tọa độ vào hệ ban đầu. Nếu thỏa mãn thì tọa độ đó là nghiệm của hệ đã cho.

Lời giải chi tiết

\(\left\{ \matrix{
x = 2 \hfill \cr 
2x - y = 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 2\ (d) \hfill \cr 
y = 2x - 3\ (d') \hfill \cr} \right.\)

Dự đoán: Hệ có nghiệm duy nhất vì một đồ thị là đường thẳng \(x = 2\) song song với trục tung, còn một đồ thị là đường thẳng \(y = 2x - 3\) cắt hai trục tọa độ.

+) Vẽ \((d)\): \(x = 2\) là đường thẳng cắt trục \(Ox\) tại \(2\) và song song với trục \(Oy\).

+) Vẽ \((d' )\): \(y =2x- 3\)

Cho \(x = 0 \Rightarrow y = -3\) ta được \(A(0; -3)\).

Cho \(y = 0 \Rightarrow x = \dfrac{3}{2}\) ta được \(B{\left(\dfrac{3 }{2};0 \right)}\).

Tập nghiệm của phương trình là đường thẳng đi qua hai điểm \(A,\ B\).

Ta thấy hai đường thẳng cắt nhau tại \(N(2; 1)\).

Thay \(x = 2, y = 1\) vào phương trình \(2x - y = 3\) ta được \(2 . 2 - 1 = 3\) (thỏa mãn).

Vậy hệ phương trình có nghiệm \((2; 1)\).

\(b)\left\{ \matrix{
x + 3y = 2 \hfill \cr
2y = 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = - \dfrac{1}{3}x + \dfrac{2}{3} \hfill \cr
y = 2 \hfill \cr} \right.\)

Hệ có nghiệm duy nhất vì một đồ thị là đường thẳng \(y =  - \dfrac{1 }{3}x + \dfrac{2}{3}\) cắt hai trục tọa độ, còn một đồ thị là đường thẳng \(y = 2\) song song với trục hoành.

+) Vẽ \(y=-\dfrac{1}{3}x+\dfrac{2}{3}\)

Cho \(x = 0 \Rightarrow y = \dfrac{2}{3}\) ta được \(A{\left(0;\dfrac{2}{3}\right)}\) .

Cho \(y = 0 \Rightarrow x = 2\) ta được \(B(2; 0)\).

Tập nghiệm của phương trình là đường thẳng đi qua hai điểm \(A,\ B\).

+) Vẽ  \(y = 2\) là đường thẳng đi qua điểm \(2\) trên trục tung và song song với trục hoành (\(Ox\))

Ta thấy hai đường thẳng cắt nhau tại \(M(-4; 2)\).

Thay \(x = -4, y = 2\) vào phương trình \(x + 3y = 2\) ta được \(-4 + 3 . 2 = 2\) (thỏa mãn).

Vậy hệ phương trình có nghiệm \((-4; 2)\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan