Bài 10 trang 12 SGK Toán 9 tập 2

Bình chọn:
3.5 trên 19 phiếu

Giải bài 10 trang 12 SGK Toán 9 tập 2. Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:

Đề bài

Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:

a) \(\left\{\begin{matrix} 4x - 4y = 2 & & \\ -2x + 2y = -1 & & \end{matrix}\right.\);                                  

b) \(\left\{\begin{matrix} \dfrac{1}{3}x - y = \dfrac{2}{3} & & \\ x -3y = 2 & & \end{matrix}\right.\).

Phương pháp giải - Xem chi tiết

Đưa hệ phương trình đã cho về dạng 

\(\left\{ \begin{array}{l}y = ax + b\,\left( d \right)\\y = a'x + b'\left( {d'} \right)\end{array} \right.\)

Ta so sánh các hệ số \(a,\ b\) và \(a',\ b'\). 

Nếu \(a=a',\ b=b'\) thì \(d\) trùng với \(d' \Rightarrow \) hệ có vô số nghiệm.

Lời giải chi tiết

a) Ta có:

\(\left\{\begin{matrix} 4x - 4y = 2 & & \\ -2x + 2y = -1 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 4y = 4x - 2 & & \\ 2y = 2x - 1 & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} y = x - \dfrac{1}{2}\, (d)& & \\ y = x - \dfrac{1}{2} \, (d')& & \end{matrix}\right.\)

Suy ra \(a = a' = 1;\ b = b' = - \dfrac{1}{2}\).

Do đó hai đường thẳng \((d)\) và \((d')\)  trùng nhau nên hệ phương trình có vô số nghiệm.

b) Ta có:

\(\left\{\begin{matrix} \dfrac{1}{3}x - y = \dfrac{2}{3} & & \\ x -3y = 2 & & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y = \dfrac{1}{3}x - \dfrac{2}{3} & & \\ 3y = x - 2 & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{1}{3}x - \dfrac{2}{3} \, (d)& & \\ y = \dfrac{1}{3}x - \dfrac{2}{3} \, (d')& & \end{matrix}\right.\)

Suy ra \(a = a' = \dfrac{1}{3}\), \(b = b' = -\dfrac{2}{3}\)

Do đó hai đường thẳng \((d)\) và \((d')\)  trùng nhau nên hệ phương trình có vô số nghiệm. 

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com