Bài 96 trang 105 SGK Toán 9 tập 2


Đề bài

Cho tam giác \(ABC\) nội tiếp đường tròn \((O)\) và tia phân giác của góc \(A\) cắt đường tròn tại \(M\). Vẽ đường cao \(AH\). Chứng minh rằng:

a) \(OM\) đi qua trung điểm của dây \(BC\).

b) \(AM\) là tia phân giác của góc \(OAH\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) + Sử dụng hai góc nội tiếp bằng nhau chắn hai cung bằng nhau

+ Chỉ ra M là điểm chính giữa cung BC.

b) + Chứng minh \(OM//AH\)

+ Sử dụng tính chất hai đường thẳng song song và tính chất tam giác cân.

Lời giải chi tiết

a) Vì \(AM\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAM} = \widehat {MAC}\)  

\( \Rightarrow\) \(\overparen{BM}\)=\(\overparen{MC}\) ( 2 góc nội tiếp bằng nhau thì chắn 2 cung bằng nhau)

\( \Rightarrow\) \(M\) là điểm chính giữa cung \(BC\)  

Vậy \(OM \bot BC\) và \(OM\) đi qua trung điểm của \(BC\) (định lí)

b) Ta có : \(OM \bot BC\) và \(AH\bot BC\) nên \(AH//OM\)

\( \Rightarrow \widehat {HAM} = \widehat {AM{\rm{O}}}\)  (2 góc so le trong)  (1)

Vì \(OA=OM\) (= bán kính đường tròn (O)) nên \(∆OAM\) cân tại \(O\) \( \Rightarrow\) \(\widehat {AM{\rm{O}}} = \widehat {MAO}\)  (2)

Từ (1) và (2) \( \Rightarrow\) \(\widehat {HA{\rm{M}}} = \widehat {MAO}\) 

Vậy \(AM\) là đường phân giác của góc \(\widehat {OAH}\)


Bình chọn:
4.3 trên 46 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.