Bài 6 trang 102 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho tam giác ABC vuông tại A. Lấy điểm M bất kì trên đoạn AC, đường tròn đường kính CM

Đề bài

Cho tam giác ABC vuông tại A. Lấy điểm M bất kì trên đoạn AC, đường tròn đường kính CM cắt hai đường thẳng BM và BC lần lượt tại D và N, cắt đường thẳng AD tại S. Chứng minh:

a) Tứ giác ABCD nội tiếp.

b) Các đường thẳng AB, MN, CD đồng quy.

Phương pháp giải - Xem chi tiết

a) Chứng minh tứ giác ABCD có hai đỉnh A; D cùng nhìn AD dưới góc 900\( \Rightarrow A;D\) thuộc đường tròn đường kính BC.

b) Gọi E là giao điểm của AB và CD. Chứng minh ME và MN cùng vuông góc với BC suy ra E, M, N thẳng hàng.

Lời giải chi tiết

 

a) Ta có \(\widehat {BDC} = {90^0}\) (góc nội tiếp chắn nửa đường tròn đường kính CM).

\( \Rightarrow \widehat {BDC} = \widehat {BAC} = {90^0} \Rightarrow \) Tứ giác ABCD có hai đỉnh A; D cùng nhìn AD dưới góc 900\( \Rightarrow A;D\) thuộc đường tròn đường kính BC.

\( \Rightarrow \) Tứ giác ABCD nội tiếp đường tròn đường kính BC.

b) Gọi E là giao điểm của AB và CD.

Xét \(\Delta EBC\) có \(BD \bot CE\,\,\left( {cmt} \right);\,\,AC \bot BE\,\,\left( {gt} \right);\)\(\,\,AC \cap BD = M \Rightarrow M\) là trực tâm của tam giác EBC \( \Rightarrow EM \bot BC\)  (1)

Ta có \(\widehat {MNC} = {90^0}\) (góc nội tiếp chắn nửa đường tròn đường kính MC) \( \Rightarrow MN \bot BC\)  (2)

Từ (1) và (2) \( \Rightarrow \) Qua M kẻ được 2 đường thẳng MN và ME cùng vuông góc với BC \( \Rightarrow E;M;N\) thẳng hàng (tiên đề Ơ-clit).

Vậy AB, CD, MN đồng quy tại E.

 Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng