
Đề bài
Cho tam giác ABC nội tiếp (O ; R). Gọi H là giao điểm ba đường cao AD, BE, CF. Gọi S là diện tích tam giác ABC.
a) Chứng minh AEHF và AEDB nội tiếp.
b) Kẻ đường kính AK của đường tròn O. Chứng minh hai tam giác ABD, AKC đồng dạng và AB.AC = 2R.AD.
c) Chứng minh \(S = \dfrac{{AB.AC.BC}}{{4R}}\) .
d) Gọi M là trung điểm BC. Chứng minh tứ giác EFDM nội tiếp.
Phương pháp giải - Xem chi tiết
a) Chứng minh tứ giác AEHF có tổng hai góc đối bằng 1800.
Chứng minh tứgiaác AEDB có 2 đỉnh cùng nhìn 1 cạnh dưới các góc bằng nhau.
b) Chứng minh hai tam giác ABD, AKC đồng dạng theo trường hợp g-g, suy ra các cặp cạnh tương ứng tỉ lệ.
c) \(S = \dfrac{1}{2}AD.BC\). Rút CD ở ý b) thế vào S.
d) Chứng minh tứ giác EFDM có 2 đỉnh cùng nhìn 1 cạnh dưới các góc bằng nhau.
Lời giải chi tiết
a) Xét tứ giác AEHF có: \(\widehat {AEH} + \widehat {AFH} = {90^0} + {90^0} = {180^0} \Rightarrow \) Tứ giác AEHF là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).
Xét tứ giác AEDB có: \(\widehat {AEB} = \widehat {ADB} = {90^0}\,\,\left( {gt} \right) \Rightarrow \) 2 đỉnh E, D cùng nhìn AB dưới 1 góc 900\( \Rightarrow \) 2 điểm E; D cùng thuộc đường tròn đường kính AB. Vậy tứ giác AEDB là tứ giác nội tiếp đường tròn đường kính AB.
b) Ta có: \(\widehat {ACK} = {90^0}\) (góc nội tiếp chắn nửa đường tròn).
Xét \(\Delta ABD\) và \(\Delta AKC\) có: \(\widehat {ADB} = \widehat {ACK} = {90^0}\); \(\widehat {ABD} = \widehat {AKC}\) (2 góc nội tiếp cùng chắn cung AC).
Mà AK là đường kính của đường tròn \(\left( {O;R} \right) \Rightarrow AK = 2R \Rightarrow AB.AC = 2R.AD\).
c) Ta có \({S_{ABC}} = S = \dfrac{1}{2}AD.BC\). Mà \(AB.AC = 2R.AD \Rightarrow AD = \dfrac{{AB.AC}}{{2R}}\)
Vậy \(S = \dfrac{1}{2}.\dfrac{{AB.AC}}{{2R}}.BC = \dfrac{{AB.AC.BC}}{{4R}}\).
d) Ta có \(\widehat {BEC} = \widehat {BFC} = {90^0} \Rightarrow \) 2 điểm E, F cùng nhìn BC dưới 1 góc 900 nên 2 điểm E, F cùng thuộc đường tròn đường kính BC \( \Rightarrow \) BCEF là tứ giác nội tiếp đường tròn đường kính BC tâm M.
Xét đường tròn đường kính BC ta có: \(\widehat {EMF} = 2\widehat {ECF}\,\,\left( 1 \right)\) (góc nội tiếp bằng nửa số đo góc ở tâm cùng chắn 1 cung).
Xét tứ giác BDHF có: \(\widehat {BDH} + \widehat {BFH} = {90^0} + {90^0} = {180^0} \Rightarrow \)BDHF là tứ giác nội tiếp(Tứ giác có tổng hai góc đối bằng 1800) \( \Rightarrow \widehat {HDF} = \widehat {HBF}\) (2 góc nội tiếp cùng chắn cung HF).
Chứng minh tương tự ta có tứ giác CDHE là tứ giác nội tiếp \( \Rightarrow \widehat {HDE} = \widehat {HCE}\) (2 góc nội tiếp cùng chắn cung HE).
Ta có: \(\widehat {EDF} = \widehat {HDE} + \widehat {HDF} = \widehat {HCE} + \widehat {HDF}\).
Xét đường tròn đường kính BC có \(\widehat {HCE} = \widehat {HDF}\) (2 góc nội tiếp cùng chắn cung EF).
\( \Rightarrow \widehat {EDF} = 2\widehat {HCE} = 2\widehat {ECF}\,\,\left( 2 \right)\) .
Từ (1) và (2) \( \Rightarrow \widehat {EMF} = \widehat {ECF} \Rightarrow \) 2 đỉnh M, C cùng nhìn EF dưới góc bằng nhau. Vậy EFDM là tứ giác nội tiếp.
Loigiaihay.com
Giải bài tập Cho tam giác ABC nhọn nội tiếp (O; R) có đường cao BE, CF cắt nhau tại H.
Giải bài tập Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R, đường kính BC với AB < AC. Vẽ
Giải bài tập Cho tứ giác lồi ABCD. Phân giác các góc A, B, C, D từng cặp liên tiếp cắt nhau tại E, F, G, H.
Giải bài tập Tứ giác ABCD có
Giải bài tập Trên đường tròn bán kính R lần lượt đặt theo cùng một chiều, kể từ điểm A, ba cung sao cho sđ ,
Giải bài tập Hãy vẽ các hình lục giác đều, hình vuông, tam giác đều cùng nội tiếp đường tròn (O ; R) rồi tính cạnh của các hình đó theo R.
Giải bài tập Cho một đa giác đều nội tiếp đường tròn (O ; R). Cho biết một cạnh của đa giác là AB = R. Tính số cạnh của đa giác.
Giải bài tập Chứng minh
Giải bài tập Một đa giác đều có n cạnh, đội dài mỗi cạnh là a. Hãy tính bán kính R và r của các đường tròn ngoại tiếp và nội tiếp đa giác đó theo a.
Giải bài tập Cho tứ giác ABCD ngoại tiếp một đường tròn. Chứng minh hai đường tròn nội tiếp hai tam giác ABC và ACD tiếp xúc nhau.
Giải bài tập Cho tứ giác ABCD nội tiếp đường tròn (O). Gọi H và I theo thứ tự là hình chiếu của B trên AC,
Giải bài tập Cho đường tròn (O) đường kính AB. Từ điểm M khác điểm A trên tiếp tuyến với đường tròn tại
Giải bài tập Cho đường tròn (O) có đường kính AB cố định. CD là một đường kính di động của (O). Các
Giải bài tập Cho tam giác ABC cân tại A nội tiếp đường tròn (O). Từ một điểm M tùy ý trên dây BC, kẻ các
Giải bài tập Cho hình vuông ABCD cạnh bằng a. Góc vuông xAy thay đổi sao cho tia Ax cắt đoạn BC tại M và tia Ay cắt đoạn CD kéo dài tại N.
Giải bài tập Cho đường tròn (O) và đường thẳng (d) ở ngoài đường tròn. Gọi A là hình chiếu của O trên d.
Giải bài tập Cho tam giác ABC vuông tại A. Lấy điểm M bất kì trên đoạn AC, đường tròn đường kính CM
Giải bài tập Cho hai đường tròn (O) và (O’) cắt nhau tại A và A’. Một cát tuyến qua A cắt (O) và (O’) lần
Giải bài tập Cho tam giác đều ABC có cạnh bằng 6 cm.
Giải bài tập Từ một điểm M nằm ngoài đường tròn (O) vẽ cát tuyến MBC và tiếp tuyến Mt tiếp xúc với (O)
Giải bài tập Cho góc nhọn xOy, trên cạnh Ox lấy hai điểm A, B sao cho OA = 2 cm, OB = 6 cm. Trên cạnh
Giải bài tập Cho tam giác ABC, gọi A’, B’ C’ lần lượt là chân ba đường cao vẽ từ A, B, C và gọi H là trực
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: