Bài 43 trang 122 SGK Toán 8 tập 2


Giải bài 43 trang 122 SGK Toán 8 tập 2. Tính diện tích xung quanh,

Đề bài

Tính diện tích xung quanh, diện tích toàn phần của các hình chóp tứ giác đều sau đây.(h.126)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Tính diện tích xung quanh: \(S_{xq}= p.h \), trong đó \(p\) là nửa chu vi đáy, \(d\) là trung đoạn của hình chóp đều. 

- Tính diện tích đáy theo công thức diện tích hình vuông: \(S_{hv}\) = cạnh \(\times \) cạnh.

- Tính diện tích toàn phần: \(S_{tp}= S_{xq} + S_{đ}\)

Lời giải chi tiết

+) Hình a : 

Chu vi đáy là \(20.4 (cm)\) 

Diện tích xung quanh của lăng trụ là:

     \(S_{xq}= p.d = \dfrac{1}{2}.20.4.20 = 800(cm^2) \)

Diện tích đáy là:

      \( S_{đ} = 20^2 = 400(cm^2) \)

Diện tích toàn phần của lăng trụ là:

      \( S_{tq}= S_{xq} + S_{đ} = 800 + 400 = 1200\) \((cm^2) \) 

+) Hình b:

Chu vi đáy là \(4.7 = 28 (cm)\) 

Diện tích xung quanh của lăng trụ là:

     \(S_{xq}= p.d = \dfrac{1}{2}.28.12 = 168 (cm^2) \)

Diện tích đáy là:

      \( S_{đ} = 7^2 = 49(cm^2) \)

Diện tích toàn phần của lăng trụ là:

      \( S_{tq}= S_{xq} + S_{đ} = 168 + 49 = 217\)\(\,(cm^2) \) 

+) Hình c:

Do I là trung điểm của BC nên \(IC=\dfrac{BC}{2}=8cm\)

Tam giác SBC có SI là đường trung tuyến nên đồng thời là đường cao, xét tam giác SIC vuông tại I, theo định lý Pytago, ta có:

\(SI = \sqrt{SC^{2}- IC^{2}}\)\(=\sqrt{17^{2}- 8^{2}}= \sqrt{225} = 15(cm) \)

Hay trung đoạn \(d=SI=15cm\)

Chu vi đáy: \(16.4=64cm\)

Diện tích xung quanh của lăng trụ là:

     \(S_{xq}= p.d = \dfrac{1}{2}.64.15 = 480(cm^2) \)

Diện tích đáy là:

      \( S_{đ} = 16^2 = 256(cm^2) \)

Diện tích toàn phần của lăng trụ là:

      \( S_{tq}= S_{xq} + S_{đ} = 480 + 256 = 736\) \((cm^2) \) 

Loigiaihay.com


Bình chọn:
4 trên 42 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.