Bài 35 trang 51 SGK Toán 8 tập 2


Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

 Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức:

LG a.

\(A = 3x + 2 + |5x| \) trong hai trường hợp: \(x ≥ 0\) và \(x < 0\);

Phương pháp giải:

- Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối.

- Rút gọn các biểu thức đã cho.

Lời giải chi tiết:

\(A = 3x + 2 + |5x| \) 

- Khi \(x ≥ 0\) ta có \(5x ≥ 0\) nên \(|5x| =5x\).

Do đó  \(A = 3x + 2 + 5x = 8x + 2  \)  khi \(x ≥ 0\).

- Khi \(x < 0\) ta có \(5x < 0\) nên \(|5x| = -5x\).

Do đó  \(A = 3x + 2 - 5x = -2x + 2  \)  khi \(x <0\).

Vậy \(A = 8x + 2  \) khi \(x ≥ 0\);

      \(A = -2x + 2\) khi \(x < 0\).

LG b.

\(B = |-4x| -2x + 12\) trong hai trường hợp: \(x ≤ 0\) và \(x > 0\);

Phương pháp giải:

- Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối.

- Rút gọn các biểu thức đã cho.

Lời giải chi tiết:

\(B =   |-4x| -2x + 12 \) 

- Khi \(x  \leq 0\) ta có \(-4x \geq 0\) nên \(|-4x| =-4x\).

Do đó  \( B = -4x -2x + 12 = -6x +12  \)  khi \(x\leq  0\).

- Khi \(x > 0\) ta có \(-4x < 0\) nên \(|-4x| = -(-4x) =4x \).

Do đó  \( B = 4x -2x + 12 = 2x +12 \)  khi \(x <0\).

Vậy \(B = -6x + 12  \) khi \(x \leq 0\);

      \(B = 2x + 12\) khi \(x < 0\).

LG c.

\(C = |x - 4| - 2x + 12 \) khi \(x > 5\);

Phương pháp giải:

- Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối.

- Rút gọn các biểu thức đã cho.

Lời giải chi tiết:

\(C = |x - 4| - 2x + 12 \) 

Với \(x > 5\) ta có \(x - 4 > 1\)  hay \(x - 4>0\) nên \( |x-4| = x-4\).

Do đó: \(C = x - 4 - 2x + 12 = -x + 8 \).

Vậy với \(x > 5\) thì \(C = -x + 8\).

LG d.

\(D = 3x + 2 + |x + 5| \)

Phương pháp giải:

- Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối.

- Rút gọn các biểu thức đã cho.

Lời giải chi tiết:

\(D = 3x + 2 + |x + 5| \)

- Khi \(x + 5 ≥ 0\) hay \(x ≥ -5\) ta có \(|x + 5| =x+5 \).

Do đó: \(D= 3x + 2 + x+ 5 =4x+7 \) khi \(x ≥ -5\)

- Khi \(x + 5 < 0\) hay \(x < -5\) ta có \(|x + 5| = -(x+5)  \).

Do đó: \(D= 3x + 2 - (x+5) \) \(=3x+2-x-5=2x-3 \) khi \(x < -5\)

Vậy \(D = 4x + 7\) khi \(x ≥ -5\)

      \(D = 2x - 3\) khi \(x < -5\)

Loigiaihay.com


Bình chọn:
4.3 trên 193 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí